如何在 Spring Flux 中并行化数据库查询?

How to parallelize database queries in Spring Flux?

我想在 Spring 中公开来自 mysql 数据库的聚合结果和 Flux<JSONObject> 流。

@RestController
public class FluxController {
     @GetMapping("/", produces = TEXT_EVENT_STREAM_VALUE)
     public Flux<JSONObject> stream() {
          return service.getJson();
     }
}

@Service
public class DatabaseService {
    public List<JSONObject> getJson() {
        List<Long> refs = jdbc.queryForList(...);
        MapSqlParameterSource params = new MapSqlParameterSource();
        params.addValue("refs", refs);

        //of course real world sql is much more complex
        List<Long, Product> products = jdbc.query(SELECT * from products where ref IN (:refs), params);
        List<Long, Item> items = jdbc.query(SELECT * from items where ref IN (:refs), params);
        List<Long, Warehouse> warehouses = jdbc.query(SELECT * from warehouses where ref IN (:refs), params);

        List<JSONObject> results = new ArrayList<>();
        for (Long ref : refs) {
            JSONObject json = new JSONObject();
            json.put("ref", ref);
            json.put("product", products.get(ref));
            json.put("item", items.get(ref));
            json.put("warehouse", warehouses.get(ref));
            results.add(json);
        }

        return results;
    }

现在我想将其转换为一个流量,将其公开为一个事件流。但是我怎样才能并行化数据库查找并将它链接在一起成为一个通量?

    public Flux<JSONObject> getJsonFlux() {
        //I need this as source
        List<Long> refs = jdbc.queryForList(...);

        return Flux.fromIterable(refs).map(refs -> {
            //TODO how to aggregate the different database calls concurrently?
            //and then expose each JSONObject one by one into the stream as soon as it is build?
        };
    }

旁注:我知道这仍然会阻塞。但在我的实际应用程序中,我正在应用分页和分块,所以每个块都会在准备好时暴露给流。

那么主要的问题是我不知道如何并行化,然后 aggregate/merge 结果例如在最后一个通量步骤中。

如果我理解得很好,您想通过将所有引用作为参数传递来执行查询。

它不会真正成为一个事件流,因为它会等到所有查询都完成并且所有 json 对象都在内存中,然后才开始流式传输它们。

public Flux<JSONObject> getJsonFlux()
{
    return Mono.fromCallable(jdbc::queryForList)
               .subscribeOn(Schedulers.elastic()) // elastic thread pool meant for blocking IO, you can use a custom one
               .flatMap(this::queryEntities)
               .map(this::createJsonObjects)
               .flatMapMany(Flux::fromIterable);
}

private Mono<Tuple4<List<Long>, List<Product>, List<Item>, List<Warehouse>>> queryEntities(List<Long> refs)
{
    Mono<List<Product>> products = Mono.fromCallable(() -> jdbc.queryProducts(refs)).subscribeOn(Schedulers.elastic());
    Mono<List<Item>> items = Mono.fromCallable(() -> jdbc.queryItems(refs)).subscribeOn(Schedulers.elastic());
    Mono<List<Warehouse>> warehouses = Mono.fromCallable(() -> jdbc.queryWarehouses(refs)).subscribeOn(Schedulers.elastic());

    return Mono.zip(Mono.just(refs), products, items, warehouses); // query calls will be concurrent
}

private List<JSONObject> createJsonObjects(Tuple4<List<Long>, List<Product>, List<Item>, List<Warehouse>> tuple)
{
    List<Long> refs = tuple.getT1();
    List<Product> products = tuple.getT2();
    List<Item> items = tuple.getT3();
    List<Warehouse> warehouses = tuple.getT4();

    List<JSONObject> jsonObjects = new ArrayList<>();

    for (Long ref : refs)
    {
        JSONObject json = new JSONObject();
        // build json object here

        jsonObjects.add(json);
    }

    return jsonObjects;
}

另一种方法是分别查询每个引用的实体。这样每个 JSONObject 都被单独查询,并且它们可以在流中交错。我不确定数据库如何处理这种负载。这是你应该考虑的事情。

public Flux<JSONObject> getJsonFlux()
{
    return Mono.fromCallable(jdbc::queryForList)
               .flatMapMany(Flux::fromIterable)
               .subscribeOn(Schedulers.elastic()) // elastic thread pool meant for blocking IO, you can use a custom one
               .flatMap(this::queryEntities)
               .map(this::createJsonObject);
}

private Mono<Tuple4<Long, Product, Item, Warehouse>> queryEntities(Long ref)
{
    Mono<Product> product = Mono.fromCallable(() -> jdbc.queryProduct(ref)).subscribeOn(Schedulers.elastic());
    Mono<Item> item = Mono.fromCallable(() -> jdbc.queryItem(ref)).subscribeOn(Schedulers.elastic());
    Mono<Warehouse> warehouse = Mono.fromCallable(() -> jdbc.queryWarehouse(ref))
                                     .subscribeOn(Schedulers.elastic());

    return Mono.zip(Mono.just(ref), product, item, warehouse); // query calls will be concurrent
}

private JSONObject createJsonObject(Tuple4<Long, Product, Item, Warehouse> tuple)
{
    Long ref = tuple.getT1();
    Product product = tuple.getT2();
    Item item = tuple.getT3();
    Warehouse warehouse = tuple.getT4();

    JSONObject json = new JSONObject();
    // build json object here

    return json;
}

想法是首先获取 refs 的完整列表,然后同时获取产品、项目和仓库 - 我将此称为 Tuple3 lookups。然后把每个reflookups组合起来,一一转化为JSONObject

return Mono.fromCallable(jdbc::queryForList) //fetches refs
                .subscribeOn(Schedulers.elastic())
                .flatMapMany(refList -> { //flatMapMany allows to convert Mono to Flux in flatMap operation
                            Flux<Tuple3<Map<Long, Product>, Map<Long, Item>, Map<Long, Warehouse>>> lookups = Mono.zip(fetchProducts(refList), fetchItems(refList), fetchWarehouses(refList))
                                    .cache().repeat(); //notice cache - it makes sure that Mono.zip is executed only once, not for each zipWith call

                            return Flux.fromIterable(refList)
                                    .zipWith(lookups);
                        }
                )
                .map(t -> {
                    Long ref = t.getT1();
                    Tuple3<Map<Long, Product>, Map<Long, Item>, Map<Long, Warehouse>> lookups = t.getT2();
                    JSONObject json = new JSONObject();
                    json.put("ref", ref);
                    json.put("product", lookups.getT1().get(ref));
                    json.put("item", lookups.getT2().get(ref));
                    json.put("warehouse", lookups.getT3().get(ref));
                    return json;
                });

每个数据库调用的方法:

Mono<Map<Long, Product>> fetchProducts(List<Long> refs) {
    return Mono.fromCallable(() -> jdbc.query(SELECT * from products where ref IN(:refs),params))
        .subscribeOn(Schedulers.elastic());
}

Mono<Map<Long, Item>> fetchItems(List<Long> refs) {
    return Mono.fromCallable(() -> jdbc.query(SELECT * from items where ref IN(:refs),params))
        .subscribeOn(Schedulers.elastic());
}

Mono<Map<Long, Warehouse>> fetchWarehouses(List<Long> refs) {
    return Mono.fromCallable(() -> jdbc.query(SELECT * from warehouses where ref IN(:refs),params))
        .subscribeOn(Schedulers.elastic());
}

为什么我需要订阅?

我之所以这么说是因为两个原因:

  1. 允许在专用线程上执行数据库查询 线程池,防止阻塞主线程: https://projectreactor.io/docs/core/release/reference/#faq.wrap-blocking

  2. 它允许真正并行化 Mono.zip。看到这个,就是 关于 flatMap,但它也适用于 zip


为了完整起见,在 zip 结果上使用 .flatMap() 也是可能的。虽然我不确定这里是否还需要 .cache()

   .flatMapMany(refList -> {
        Mono.zip(fetchProducts(refList), fetchItems(refList), fetchWarehouses(refList)).cache()
            .flatMap(tuple -> Flux.fromIterable(refList).map(refId -> Tuples.of(refId, tuple)));
    .map(tuple -> {
        String refId = tuple.getT1();
        Tuple lookups = tuple.getT2();
    }
})