为什么我的带线程的 numpy 代码不是并行的?

Why is my numpy code with threading not parallel?

我需要对几个点邻域的栅格(矩阵)执行一些计算。我的想法是在并行线程中进行这些计算,然后汇总生成的栅格。我的问题是执行似乎不是 运行 并行的。当我将点数乘以 2 时,执行时间将延长 2 倍。我做错了什么?

from threading import Lock, Thread
import numpy as np
import time

SIZE = 1000000
THREADS = 8
my_lock=Lock()
results = np.zeros(SIZE,dtype=np.float64)

def do_job(j):
    global results
    s_time = time.time()  
    print("Starting... "+str(j))

    #do some calculations
    c_r=np.zeros(SIZE,dtype=np.float64)
    for i in range(SIZE):
        c_r[i]=np.exp(-0.001*i)

    print("\t Calculation at job "+str(j)+" lasted: {:3.3f}".format(time.time()-s_time))

    #sum up the results
    if my_lock.acquire(blocking=True):
        results = np.add(results,c_r)
        my_lock.release()

    print("\t Job "+str(j)+" lasted: {:3.3f}".format(time.time()-s_time))



def main():
    global THREADS
    s_time = time.time()  
    threads=[]

    while THREADS>0:

        p = Thread(target=do_job,args=(THREADS,))
        threads.append(p)
        p.start()
        THREADS = THREADS-1

    print("Start finished after : {:3.3f}".format(time.time()-s_time))
    for p in threads:
        p.join()

    print("Total run diuration: {:3.3f}".format(time.time()-s_time))


if __name__ == "__main__":
    main()

当我 运行 THREADS=4 的代码时,我得到:

Starting... 4
Starting... 3
Starting... 2
Starting... 1
Start finished after : 0.069
         Calculation at job 4 lasted: 5.805
         Job 4 lasted: 5.887
         Calculation at job 3 lasted: 6.230
         Job 3 lasted: 6.237
         Calculation at job 1 lasted: 6.585
         Job 1 lasted: 6.595
         Calculation at job 2 lasted: 6.737
         Job 2 lasted: 6.738
Total run diuration: 6.760

当我切换到 THREADS = 8 时,执行时间大约加倍:

Starting... 8
Starting... 7
Starting... 6
Starting... 5
Starting... 4
Starting... 3
Starting... 1
Start finished after : 0.182
Starting... 2
         Calculation at job 7 lasted: 11.883
         Job 7 lasted: 11.939
         Calculation at job 8 lasted: 13.096
         Job 8 lasted: 13.144
         Calculation at job 1 lasted: 13.548
         Job 1 lasted: 13.576
         Calculation at job 3 lasted: 13.723
         Job 3 lasted: 13.748
         Calculation at job 2 lasted: 14.231
         Job 2 lasted: 14.268
         Calculation at job 5 lasted: 14.698
         Job 5 lasted: 14.708
         Calculation at job 4 lasted: 15.000
         Job 4 lasted: 15.015
         Calculation at job 6 lasted: 15.133
         Job 6 lasted: 15.135
Total run diuration: 15.136

您遇到了全局解释器锁 (GIL),请参阅 https://wiki.python.org/moin/GlobalInterpreterLock

当时只有一个"thread"可以进入翻译。 您的代码主要在 for i in range(SIZE) 循环内运行,由 Python 解释器执行。上下文切换只能在 IO 操作或调用 C 函数(释放 GIL)时发生。此外,与线程执行的操作相比,线程之间的切换成本很大。这就是为什么添加更多线程会减慢执行速度的原因。

根据 numpy 文档,许多操作释放 GIL,因此如果您矢量化您的操作强制程序在 numpy 中花费更多时间,您可以从线程中获益。

参见post:

尝试修改自:

for i in range(SIZE):
        c_r[i]=np.exp(-0.001*i)

至:

c_r = np.exp(-0.001*np.arange(SIZE))