检查输入时出错:预期 dense_8_input 有 2 个维度
Error when checking input: expected dense_8_input to have 2 dimensions
我正在尝试 运行 一个简单的 MNIST 分类网络:
network = models.Sequential()
network.add(layers.Dense(512, activation = 'relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
当我尝试适应时:
network.fit(train_images, train_labels, epochs =5, batch_size = 128)
我收到这个错误:
Error when checking input: expected dense_8_input to have 2
dimensions, but got array with shape (60000, 28, 28)
我在做什么?
您的模型期望每个输入样本的形状为 (784,)
(即 input_shape=(28 * 28,)
)。但是,如错误所示,输入数组当前的形状为 (num_samples, 28, 28)
。所以你需要重塑它:
import numpy as np
train_images = np.reshape(train_images, (-1, 28*28))
我正在尝试 运行 一个简单的 MNIST 分类网络:
network = models.Sequential()
network.add(layers.Dense(512, activation = 'relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
当我尝试适应时:
network.fit(train_images, train_labels, epochs =5, batch_size = 128)
我收到这个错误:
Error when checking input: expected dense_8_input to have 2 dimensions, but got array with shape (60000, 28, 28)
我在做什么?
您的模型期望每个输入样本的形状为 (784,)
(即 input_shape=(28 * 28,)
)。但是,如错误所示,输入数组当前的形状为 (num_samples, 28, 28)
。所以你需要重塑它:
import numpy as np
train_images = np.reshape(train_images, (-1, 28*28))