如何在叠加图中将 RangetoolLink 与全息视图一起使用
How to use RangetoolLink with holoviews in an Overlayed plot
我正在尝试在全息视图叠加图中使用全息视图 Rangetool link。但是无法实现linking范围内的工作。有可能实现吗?
基于这些 links example 1 and example 2 我尝试了使用叠加图而不是单个曲线图的选项。但这没有用。下面我提供了一个类似的虚拟数据的例子。
import pandas as pd
import holoviews as hv
from holoviews import opts
import numpy as np
from holoviews.plotting.links import RangeToolLink
hv.extension('bokeh')
# Genrate Random Data
def randomDataGenerator(noOfSampleDataSets):
for i in range(noOfSampleDataSets):
res = np.random.randn(1000).cumsum()
yield res
# Overlay Plots
overlaid_plot = hv.Overlay([hv.Curve(data)
.opts(width=800, height=600, axiswise=True, default_tools=[])
for data in randomDataGenerator(5)])
# Adjust Source Height
source = overlaid_plot.opts(height=200)
# adjust target plot attributes
target = source.opts(clone=True, width=800, labelled=['y'],)
# Link source and target
rtlink = RangeToolLink(source, target)
# Compose and plot.
(target + source).cols(1).opts(merge_tools=False)
我希望源图会显示一个范围工具,如示例中所示,并且能够 select 其中的范围应该 select 目标中的相同数据点剧情.
以下代码适用于我的情况。我稍微重构了代码。但是道理还是一样的。因此,如果我们有一个叠加图,link 叠加图中的一条曲线可以很好地处理所有剩余曲线。
Following code works in a jupyter notebook. Its not tested in other environment.
import holoviews as hv
import numpy as np
hv.extension('bokeh')
from holoviews.plotting.links import RangeToolLink
# Genrate Random Data
def randomDataGenerator(noOfSampleDataSets):
for i in range(noOfSampleDataSets):
res = np.random.randn(1000).cumsum()
yield res
#generate all curves
def getCurves(n):
for data in randomDataGenerator(n):
curve = hv.Curve(data)
yield curve
source_curves, target_curves = [], []
for curve in getCurves(10):
# Without relabel, the curve somehow shares the ranging properties. opts with clone=True doesn't help either.
src = curve.relabel('').opts(width=800, height=200, yaxis=None, default_tools=[])
tgt = curve.opts(width=800, labelled=['y'], toolbar='disable')
source_curves.append(src)
target_curves.append(tgt)
# link RangeTool for the first curves in the list.
RangeToolLink(source_curves[0],target_curves[0])
#Overlay the source and target curves
overlaid_plot_src = hv.Overlay(source_curves).relabel('Source')
overlaid_plot_tgt = hv.Overlay(target_curves).relabel('Target').opts(height=600)
# layout the plot and render
layout = (overlaid_plot_tgt + overlaid_plot_src).cols(1)
layout.opts(merge_tools=False,shared_axes=False)
我正在尝试在全息视图叠加图中使用全息视图 Rangetool link。但是无法实现linking范围内的工作。有可能实现吗?
基于这些 links example 1 and example 2 我尝试了使用叠加图而不是单个曲线图的选项。但这没有用。下面我提供了一个类似的虚拟数据的例子。
import pandas as pd
import holoviews as hv
from holoviews import opts
import numpy as np
from holoviews.plotting.links import RangeToolLink
hv.extension('bokeh')
# Genrate Random Data
def randomDataGenerator(noOfSampleDataSets):
for i in range(noOfSampleDataSets):
res = np.random.randn(1000).cumsum()
yield res
# Overlay Plots
overlaid_plot = hv.Overlay([hv.Curve(data)
.opts(width=800, height=600, axiswise=True, default_tools=[])
for data in randomDataGenerator(5)])
# Adjust Source Height
source = overlaid_plot.opts(height=200)
# adjust target plot attributes
target = source.opts(clone=True, width=800, labelled=['y'],)
# Link source and target
rtlink = RangeToolLink(source, target)
# Compose and plot.
(target + source).cols(1).opts(merge_tools=False)
我希望源图会显示一个范围工具,如示例中所示,并且能够 select 其中的范围应该 select 目标中的相同数据点剧情.
以下代码适用于我的情况。我稍微重构了代码。但是道理还是一样的。因此,如果我们有一个叠加图,link 叠加图中的一条曲线可以很好地处理所有剩余曲线。
Following code works in a jupyter notebook. Its not tested in other environment.
import holoviews as hv
import numpy as np
hv.extension('bokeh')
from holoviews.plotting.links import RangeToolLink
# Genrate Random Data
def randomDataGenerator(noOfSampleDataSets):
for i in range(noOfSampleDataSets):
res = np.random.randn(1000).cumsum()
yield res
#generate all curves
def getCurves(n):
for data in randomDataGenerator(n):
curve = hv.Curve(data)
yield curve
source_curves, target_curves = [], []
for curve in getCurves(10):
# Without relabel, the curve somehow shares the ranging properties. opts with clone=True doesn't help either.
src = curve.relabel('').opts(width=800, height=200, yaxis=None, default_tools=[])
tgt = curve.opts(width=800, labelled=['y'], toolbar='disable')
source_curves.append(src)
target_curves.append(tgt)
# link RangeTool for the first curves in the list.
RangeToolLink(source_curves[0],target_curves[0])
#Overlay the source and target curves
overlaid_plot_src = hv.Overlay(source_curves).relabel('Source')
overlaid_plot_tgt = hv.Overlay(target_curves).relabel('Target').opts(height=600)
# layout the plot and render
layout = (overlaid_plot_tgt + overlaid_plot_src).cols(1)
layout.opts(merge_tools=False,shared_axes=False)