PyTorch BERT TypeError: forward() got an unexpected keyword argument 'labels'
PyTorch BERT TypeError: forward() got an unexpected keyword argument 'labels'
使用 PyTorch 转换器训练 BERT 模型(遵循教程 here)。
教程中的以下语句
loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
导致
TypeError: forward() got an unexpected keyword argument 'labels'
这是完整的错误,
TypeError Traceback (most recent call last)
<ipython-input-53-56aa2f57dcaf> in <module>
26 optimizer.zero_grad()
27 # Forward pass
---> 28 loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
29 train_loss_set.append(loss.item())
30 # Backward pass
~/anaconda3/envs/systreviewclassifi/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
539 result = self._slow_forward(*input, **kwargs)
540 else:
--> 541 result = self.forward(*input, **kwargs)
542 for hook in self._forward_hooks.values():
543 hook_result = hook(self, input, result)
TypeError: forward() got an unexpected keyword argument 'labels'
我似乎无法弄清楚 forward() 函数需要什么样的参数。
有一个类似的问题here,但我仍然没有得到解决方案。
系统信息:
- OS:Ubuntu 16.04 LTS
- Python版本:3.6.x
- 手电筒版本:1.3.0
- 火炬视觉版本:0.4.1
- PyTorch 转换器版本:1.2.0
据我所知,BertModel 不会在 forward()
函数中使用标签。查看 forward 函数参数。
我怀疑您正在尝试为序列 class化任务微调 BertModel,而 API 为 BertForSequenceClassification 提供了一个 class。如您所见,它的 forward() 函数定义:
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
请注意,forward() 方法 returns 以下内容。
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
希望对您有所帮助!
使用 PyTorch 转换器训练 BERT 模型(遵循教程 here)。
教程中的以下语句
loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
导致
TypeError: forward() got an unexpected keyword argument 'labels'
这是完整的错误,
TypeError Traceback (most recent call last)
<ipython-input-53-56aa2f57dcaf> in <module>
26 optimizer.zero_grad()
27 # Forward pass
---> 28 loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
29 train_loss_set.append(loss.item())
30 # Backward pass
~/anaconda3/envs/systreviewclassifi/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
539 result = self._slow_forward(*input, **kwargs)
540 else:
--> 541 result = self.forward(*input, **kwargs)
542 for hook in self._forward_hooks.values():
543 hook_result = hook(self, input, result)
TypeError: forward() got an unexpected keyword argument 'labels'
我似乎无法弄清楚 forward() 函数需要什么样的参数。
有一个类似的问题here,但我仍然没有得到解决方案。
系统信息:
- OS:Ubuntu 16.04 LTS
- Python版本:3.6.x
- 手电筒版本:1.3.0
- 火炬视觉版本:0.4.1
- PyTorch 转换器版本:1.2.0
据我所知,BertModel 不会在 forward()
函数中使用标签。查看 forward 函数参数。
我怀疑您正在尝试为序列 class化任务微调 BertModel,而 API 为 BertForSequenceClassification 提供了一个 class。如您所见,它的 forward() 函数定义:
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
请注意,forward() 方法 returns 以下内容。
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
希望对您有所帮助!