lmfit - 最小化器不接受 scipy 个最小化器关键字参数

lmfit - minimizer does not accept scipy minimizer keyword arguments

我正在尝试使用 lmfit 将某些模型拟合到我的数据中。请参阅下面的 MWE:

import lmfit
import numpy as np

def lm(params, x):
    slope = params['slope']
    interc = params['interc']

    return interc + slope * x

def lm_min(params, x, data):
    y = lm(params, x)
    return data - y

x = np.linspace(0,100,1000)
y = lm({'slope':1, 'interc':0.5}, x)

ydata = y + np.random.randn(1000)

params = lmfit.Parameters()
params.add('slope', 2)
params.add('interc', 1)

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), fit_kws={'xatol':0.01})
fit = fitter.minimize(method='nelder')

为了早点完成(目前准确率不是最重要的),我想改变停止拟合的标准。基于 docs and some searches on ,我尝试提供一些关键字参数(下行中的 fit_kws),这些参数将被传递给所使用的最小化器。我还尝试使用 kws**{'xatol':0.01}。除此之外,我还在调用 fitter.minimize() 的最后一行中尝试了前面提到的选项。但是,在所有情况下,我都会得到一个 TypeError,说它得到了意外的关键字参数:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~/STACK/WUR/PhD/Experiments/Microclimate experiment/Scripts/Fluctuations/mwe.py in <module>()
     25 
     26 fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), fit_kws={'xatol':0.01})
---> 27 fit = fitter.minimize(method='nelder')
     28 

~/anaconda3/envs/py/lib/python3.6/site-packages/lmfit/minimizer.py in minimize(self, method, params, **kws)
   1924                         val.lower().startswith(user_method)):
   1925                     kwargs['method'] = val
-> 1926         return function(**kwargs)
   1927 
   1928 

~/anaconda3/envs/py/lib/python3.6/site-packages/lmfit/minimizer.py in scalar_minimize(self, method, params, **kws)
    906         else:
    907             try:
--> 908                 ret = scipy_minimize(self.penalty, variables, **fmin_kws)
    909             except AbortFitException:
    910                 pass

TypeError: minimize() got an unexpected keyword argument 'fit_kws'

有人知道如何为特定求解器添加关键字参数吗?

版本信息:

python: 3.6.9
scipy: 1.3.1
lmfit: 0.9.12

将关键字参数传递给底层 scipy 求解器的最佳方法就是使用

# Note: valid but will not do what you want
fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), xatol=0.01)
fit = fitter.minimize(method='nelder')

# Also: valid but will not do what you want
fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata))
fit = fitter.minimize(method='nelder', xatol=0.01)

这里的主要问题是 xatol 不是底层求解器 scipy.optimize.minimize() 的有效关键字参数。相反,您可能打算使用 tol:

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), tol=0.01)
fit = fitter.minimize(method='nelder')

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata))
fit = fitter.minimize(method='nelder', tol=0.01)

在githubissue中我找到了以下解决方案:

fit = fitter.minimize(method='nelder', **{'options':{'xatol':4e-4}})

更新
正如@dashesy 所提到的,这与写作相同:

fit = fitter.minimize(method='nelder', options={'xatol':4e-4})

这也适用于其他求解器选项。