scikit-learn:FeatureUnion 包含手工制作的功能

scikit-learn: FeatureUnion to include hand crafted features

我正在对文本数据执行多标签分类。 我希望使用 tfidf 的组合特征和类似于示例 here using FeatureUnion 的自定义语言特征。

我已经生成了自定义语言特征,它们采用字典的形式,其中键代表标签,值(列表)代表特征。

custom_features_dict = {'contact':['contact details', 'e-mail'], 
                       'demographic':['gender', 'age', 'birth'],
                       'location':['location', 'geo']}

训练数据结构如下:

text                                            contact  demographic  location
---                                              ---      ---          ---
'provide us with your date of birth and e-mail'  1        1            0
'contact details and location will be stored'    1        0            1
'date of birth should be before 2004'            0        1            0

如何将上面的dict合并到FeatureUnion中呢?我的理解是,应该调用用户定义的函数,该函数对应于训练数据中是否存在字符串值(来自 custom_features_dict)的 returns 布尔值。

对于给定的训练数据,这给出了以下 listdict

[
    {
       'contact':1,
       'demographic':1,
       'location':0
    },
    {
       'contact':1,
       'demographic':0,
       'location':1
    },
    {
       'contact':0,
       'demographic':1,
       'location':0
    },
] 

如何使用上面的list来实现拟合和变换?

代码如下:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import DictVectorizer
#from sklearn.metrics import accuracy_score
from sklearn.multiclass import OneVsRestClassifier
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
from io import StringIO

data = StringIO(u'''text,contact,demographic,location
provide us with your date of birth and e-mail,1,1,0
contact details and location will be stored,0,1,1
date of birth should be before 2004,0,1,0''')

df = pd.read_csv(data)

custom_features_dict = {'contact':['contact details', 'e-mail'], 
                        'demographic':['gender', 'age', 'birth'],
                        'location':['location', 'geo']}

my_features = [
    {
       'contact':1,
       'demographic':1,
       'location':0
    },
    {
       'contact':1,
       'demographic':0,
       'location':1
    },
    {
       'contact':0,
       'demographic':1,
       'location':0
    },
]

bow_pipeline = Pipeline(
    steps=[
        ("tfidf", TfidfVectorizer(stop_words=stop_words)),
    ]
)

manual_pipeline = Pipeline(
    steps=[
        # This needs to be fixed
        ("custom_features", my_features),
        ("dict_vect", DictVectorizer()),
    ]
)

combined_features = FeatureUnion(
    transformer_list=[
        ("bow", bow_pipeline),
        ("manual", manual_pipeline),
    ]
)

final_pipeline = Pipeline([
            ('combined_features', combined_features),
            ('clf', OneVsRestClassifier(LinearSVC(), n_jobs=1)),
        ]
)

labels = ['contact', 'demographic', 'location']

for label in labels:
    final_pipeline.fit(df['text'], df[label]) 

您必须定义一个将您的文本作为输入的转换器。类似的东西:

from sklearn.base import BaseEstimator, TransformerMixin

custom_features_dict = {'contact':['contact details', 'e-mail'], 
                   'demographic':['gender', 'age', 'birth'],
                   'location':['location', 'geo']}

#helper function which returns 1, if one of the words occures in the text, else 0
#you can add more words or categories to custom_features_dict if you want
def is_words_present(text, listofwords):
  for word in listofwords:
    if word in text:
      return 1
  return 0

class CustomFeatureTransformer(BaseEstimator, TransformerMixin):
    def __init__(self, custom_feature_dict):
       self.custom_feature_dict = custom_feature_dict
    def fit(self, x, y=None):
        return self    
    def transform(self, data):
        result_arr = []
        for text in data:
          arr = []
          for key in self.custom_feature_dict:
            arr.append(is_words_present(text, self.custom_feature_dict[key]))
          result_arr.append(arr)
        return result_arr

注意:这个Transformer直接生成一个数组,如下所示:[1, 0, 1],它不生成字典,这样我们就可以省去DictVectorizer。

另外我改变了处理多标签分类的方式,见here:

#first, i generate a new column in the dataframe, with all the labels per row:
def create_textlabels_array(row):
  arr = []
  for label in ['contact', 'demographic', 'location']:
    if row[label]==1:
      arr.append(label)
  return arr

df['textlabels'] = df.apply(create_textlabels_array, 1) 

#then we generate the binarized Labels:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer().fit(df['textlabels'])
y = mlb.transform(df['textlabels'])

现在我们可以将所有内容一起添加到管道中:

bow_pipeline = Pipeline(
    steps=[
        ("tfidf", TfidfVectorizer(stop_words=stop_words)),
    ]
)

manual_pipeline = Pipeline(
    steps=[
        ("costum_vect", CustomFeatureTransformer(custom_features_dict)),
    ]
)

combined_features = FeatureUnion(
    transformer_list=[
        ("bow", bow_pipeline),
        ("manual", manual_pipeline),
    ]
)

final_pipeline = Pipeline([
        ('combined_features', combined_features),
        ('clf', OneVsRestClassifier(LinearSVC(), n_jobs=1)),
    ]
)

#train your pipeline
final_pipeline.fit(df['text'], y) 

#let's predict something: (Note: of course training data is a bit low in that examplecase here)
pred = final_pipeline.predict(["write an e-mail to our location please"])
print(pred) #output: [0, 1, 1] 

#reverse the predicted array to the actual labels:
print(mlb.inverse_transform(pred)) #output: [('demographic', 'location')]

如果我们只想修复标记为已修复的那部分代码,我们所需要做的就是实现一个新的估计器,扩展 class sklearn.base.BaseEstimator(class TemplateClassifier 是一个很好的例子 here).

然而这里似乎存在概念上的错误。列表 my_features 中的信息似乎是标签本身(好吧,有人可能会说它们是非常强大的特征......)。所以,我们不应该把标签放在特征管道中。

如所述here

Transformers are usually combined with classifiers, regressors or other estimators to build a composite estimator. The most common tool is a Pipeline. Pipeline is often used in combination with FeatureUnion which concatenates the output of transformers into a composite feature space. TransformedTargetRegressor deals with transforming the target (i.e. log-transform y). In contrast, Pipelines only transform the observed data (X).

就是说,如果您仍想将该列表信息放在转换方法中,则应该是这样的:

def transform_str(one_line_text: str) -> dict:
    """ Transforms one line of text to dict features using manually extracted information"""
    # manually extracted information
    custom_features_dict = {'contact': ['contact details', 'e-mail'],
                            'demographic': ['gender', 'age', 'birth'],
                            'location': ['location', 'geo']}
    # simple tokenization. it can be improved using some text pre-processing lib
    tokenized_text = one_line_text.split(" ")
    output = dict()
    for feature,tokens in custom_features_dict.items():
        output[feature] = False
        for word in tokenized_text:
            if word in tokens:
                output[feature] = True
    return output

def transform(text_list: list) -> list:
    output = list()
    for one_line_text in text_list:
        output.append(transform_str(one_line_text))
    return output

在这种情况下,您不需要 fit 方法,因为拟合是手动完成的。