将墨卡托投影转换为等距柱状投影的着色器?
Shader that transforms a mercator projection to equirectangular?
我正在尝试在 Unity 中使用 mercator projection texture as a source and converting it to an equirectangular projection texture.
制作着色器
输入示例:
输出示例:
This example does the opposite with an equirectangular as source.
如果你看上面例子的来源:
// mercator
float latClamped = clamp(lat, -1.4835298641951802, 1.4835298641951802);
float yMerc = log(tan(PI / 4.0 + latClamped / 2.0)) / PI2;
float xMerc = xEqui / 2.0;
vec4 mercatorPos = vec4(xMerc, yMerc, 0.0, 1.0);
任何人都可以帮助扭转这种情况,以便我能够从墨卡托贴图作为源转到等距柱状贴图(或者更好,azimuthal)。
正在寻找一种从 x/y 到经度 (x)/纬度 (y) 并返回的 2D 纹理变形方法。
感谢您的意见。
如果要输出等距柱状投影,需要将等距柱状坐标转换为墨卡托坐标,然后在这些坐标处对墨卡托投影进行采样。
这是它在来自 uvs 的片段着色器中的样子:
//uv to equirectangular
float lat = (uv.x) * 2 * PI; // from 0 to 2PI
float lon = (uv.y - .5f) * PI; // from -PI to PI
// equirectangular to mercator
float x = lat;
float y = log(tan(PI / 4. + lon / 2.));
// bring x,y into [0,1] range
x = x / (2*PI);
y = (y+PI) / (2*PI);
// sample mercator projection
fixed4 col = tex2D(_MainTex, float2(x,y));
同样的事情也适用于方位角投影:您可以从方位角坐标 -> 等距柱状 -> 墨卡托投影并对图像进行采样。或者你可以找到一个公式直接从方位角 - >墨卡托。 wiki pages have a bunch of formulas to go back and forth between projections.
Here is a full shader to play around with. Input is a mercator projection and outputs a equirectangular or azimuthal projection (choose from the dropdown menu)
Shader "Unlit/NewUnlitShader 1"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
[Enum(Equirectangular,0,Azimuthal,1)]
_Azimuthal("Projection", float) = 0
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;
};
sampler2D _MainTex;
float4 _MainTex_ST;
float _Azimuthal;
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
return o;
}
#define PI 3.141592653589793238462f
#define PI2 6.283185307179586476924f
float2 uvToEquirectangular(float2 uv) {
float lat = (uv.x) * PI2; // from 0 to 2PI
float lon = (uv.y - .5f) * PI; // from -PI to PI
return float2(lat, lon);
}
float2 uvAsAzimuthalToEquirectangular(float2 uv) {
float2 coord = (uv - .5) * 4;
float radius = length(coord);
float angle = atan2(coord.y, coord.x) + PI;
//formula from https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection
float lat = angle;
float lon = 2 * acos(radius / 2.) - PI / 2;
return float2(lat, lon);
}
fixed4 frag(v2f i) : SV_Target
{
// get equirectangular coordinates
float2 coord = _Azimuthal ? uvAsAzimuthalToEquirectangular(i.uv) : uvToEquirectangular(i.uv);
// equirectangular to mercator
float x = coord.x;
float y = log(tan(PI / 4. + coord.y / 2.));
// brin x,y into [0,1] range
x = x / PI2;
y = (y + PI) / PI2;
fixed4 col = tex2D(_MainTex, float2(x,y));
// just to make it look nicer
col = _Azimuthal && length(i.uv*2-1) > 1 ? 1 : col;
return col;
}
ENDCG
}
}
}
我正在尝试在 Unity 中使用 mercator projection texture as a source and converting it to an equirectangular projection texture.
制作着色器输入示例:
输出示例:
This example does the opposite with an equirectangular as source.
如果你看上面例子的来源:
// mercator
float latClamped = clamp(lat, -1.4835298641951802, 1.4835298641951802);
float yMerc = log(tan(PI / 4.0 + latClamped / 2.0)) / PI2;
float xMerc = xEqui / 2.0;
vec4 mercatorPos = vec4(xMerc, yMerc, 0.0, 1.0);
任何人都可以帮助扭转这种情况,以便我能够从墨卡托贴图作为源转到等距柱状贴图(或者更好,azimuthal)。
正在寻找一种从 x/y 到经度 (x)/纬度 (y) 并返回的 2D 纹理变形方法。
感谢您的意见。
如果要输出等距柱状投影,需要将等距柱状坐标转换为墨卡托坐标,然后在这些坐标处对墨卡托投影进行采样。
这是它在来自 uvs 的片段着色器中的样子:
//uv to equirectangular
float lat = (uv.x) * 2 * PI; // from 0 to 2PI
float lon = (uv.y - .5f) * PI; // from -PI to PI
// equirectangular to mercator
float x = lat;
float y = log(tan(PI / 4. + lon / 2.));
// bring x,y into [0,1] range
x = x / (2*PI);
y = (y+PI) / (2*PI);
// sample mercator projection
fixed4 col = tex2D(_MainTex, float2(x,y));
同样的事情也适用于方位角投影:您可以从方位角坐标 -> 等距柱状 -> 墨卡托投影并对图像进行采样。或者你可以找到一个公式直接从方位角 - >墨卡托。 wiki pages have a bunch of formulas to go back and forth between projections.
Here is a full shader to play around with. Input is a mercator projection and outputs a equirectangular or azimuthal projection (choose from the dropdown menu)
Shader "Unlit/NewUnlitShader 1"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
[Enum(Equirectangular,0,Azimuthal,1)]
_Azimuthal("Projection", float) = 0
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;
};
sampler2D _MainTex;
float4 _MainTex_ST;
float _Azimuthal;
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
return o;
}
#define PI 3.141592653589793238462f
#define PI2 6.283185307179586476924f
float2 uvToEquirectangular(float2 uv) {
float lat = (uv.x) * PI2; // from 0 to 2PI
float lon = (uv.y - .5f) * PI; // from -PI to PI
return float2(lat, lon);
}
float2 uvAsAzimuthalToEquirectangular(float2 uv) {
float2 coord = (uv - .5) * 4;
float radius = length(coord);
float angle = atan2(coord.y, coord.x) + PI;
//formula from https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection
float lat = angle;
float lon = 2 * acos(radius / 2.) - PI / 2;
return float2(lat, lon);
}
fixed4 frag(v2f i) : SV_Target
{
// get equirectangular coordinates
float2 coord = _Azimuthal ? uvAsAzimuthalToEquirectangular(i.uv) : uvToEquirectangular(i.uv);
// equirectangular to mercator
float x = coord.x;
float y = log(tan(PI / 4. + coord.y / 2.));
// brin x,y into [0,1] range
x = x / PI2;
y = (y + PI) / PI2;
fixed4 col = tex2D(_MainTex, float2(x,y));
// just to make it look nicer
col = _Azimuthal && length(i.uv*2-1) > 1 ? 1 : col;
return col;
}
ENDCG
}
}
}