yolo but -nan 和 nan 上的训练模型
Training model on yolo but -nan and nan
我想在 yolo 上训练模型,但一步后给出 nan 和 -nan
我有 300 张不同尺寸的图片(差不多 600*600)
和一个 class 来检测图像。在我用 100 张图像给出好的结果之前(检测准确度为 %75)
但我想给出最好的结果。
tiny_yolo.cfg
[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 120000
policy=steps
steps=-1,100,80000,100000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=30
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear
[region]
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
bias_match=1
classes=1
coords=4
num=5
softmax=1
jitter=.2
rescore=1
small_object=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1
然后我拆分了 80-20 个训练和测试数据
我用这个 darknet
请帮帮我!
我忘记了暗网中的配置生成文件。
我使用 Google Colab,首先必须使用 GPU 和 CUDNN 进行定义。
我想在 yolo 上训练模型,但一步后给出 nan 和 -nan 我有 300 张不同尺寸的图片(差不多 600*600) 和一个 class 来检测图像。在我用 100 张图像给出好的结果之前(检测准确度为 %75) 但我想给出最好的结果。
tiny_yolo.cfg
[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 120000
policy=steps
steps=-1,100,80000,100000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=30
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear
[region]
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
bias_match=1
classes=1
coords=4
num=5
softmax=1
jitter=.2
rescore=1
small_object=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1
然后我拆分了 80-20 个训练和测试数据 我用这个 darknet
请帮帮我!
我忘记了暗网中的配置生成文件。 我使用 Google Colab,首先必须使用 GPU 和 CUDNN 进行定义。