使用 Python 从图像中删除不需要的连接像素
Remove undesired connected pixels from an image with Python
我是 Python 图像处理的初学者,所以我需要帮助。
我正在尝试使用下面发布的代码从我的图片中删除连接像素的区域。实际上,它有效但效果不佳。
我想要的是从我的图像中去除像素区域,例如下面报告的图片中标记为红色的区域,以获得干净的图片。
为连接像素的检测区域的尺寸设置最小和最大限制也很好。
Example of a picture with marked areas 1
Example of a picture with marked areas 2
这是我当前的代码:
### LOAD MODULES ###
import numpy as np
import imutils
import cv2
def is_contour_bad(c): # Decide what I want to find and its features
peri=cv2.contourArea(c, True) # Find areas
approx=cv2.approxPolyDP(c, 0.3*peri, True) # Set areas approximation
return not len(approx)>2 # Threshold to decide if add an area to the mask for its removing (if>2 remove)
### DATA PROCESSING ###
image=cv2.imread("025.jpg") # Load a picture
gray=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
cv2.imshow("Original image", image) # Plot
edged=cv2.Canny(gray, 50, 200, 3) # Edges of areas detection
cnts=cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
cnts=imutils.grab_contours(cnts)
mask=np.ones(image.shape[:2], dtype="uint8")*255 # Setup the mask with white background
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c):
cv2.drawContours(mask, [c], -1, 0, -1) # (source image, list of contours, with -1 all contours in [c] pass, 0 is the intensity, -1 the thickness)
image_cleaned=cv2.bitwise_and(image, image, mask=mask) # Remove the contours from the original image
cv2.imshow("Adopted mask", mask) # Plot
cv2.imshow("Cleaned image", image_cleaned) # Plot
cv2.imwrite("cleaned_025.jpg", image_cleaned) # Write in a file
您可以执行以下处理步骤:
- 使用
cv2.threshold
.
将图像阈值化为二值图像
这不是必须的,但在你的情况下,灰色阴影看起来并不重要。
- 使用closing形态学操作,用于关闭二值图像中的小间隙。
- 使用
cv2.findContours
和 cv2.RETR_EXTERNAL
参数,以获得白色簇周围的轮廓(周长)。
- 将"bad contour"的逻辑修改为return true,仅当面积较大时(假设你只想清理大的三个轮廓)。
这是更新后的代码:
### LOAD MODULES ###
import numpy as np
import imutils
import cv2
def is_contour_bad(c): # Decide what I want to find and its features
peri = cv2.contourArea(c) # Find areas
return peri > 50 # Large area is considered "bad"
### DATA PROCESSING ###
image = cv2.imread("025.jpg") # Load a picture
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
# Convert to binary image (all values above 20 are converted to 1 and below to 0)
ret, thresh_gray = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY)
# Use "close" morphological operation to close the gaps between contours
#
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
image_cleaned = gray
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
#cv2.imshow("Adopted mask", mask) # Plot
cv2.imshow("Cleaned image", image_cleaned) # Plot
cv2.imwrite("cleaned_025.jpg", image_cleaned) # Write in a file
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
找到用于测试的标记轮廓:
for c in cnts:
if is_contour_bad(c):
# Draw green line for marking the contour
cv2.drawContours(image, [c], 0, (0, 255, 0), 1)
结果:
还有工作要做...
更新
两次迭代方法:
- 第一次迭代 - 删除大轮廓。
- 第二次迭代 - 移除小但 明亮 的轮廓。
代码如下:
import numpy as np
import imutils
import cv2
def is_contour_bad(c, thrs): # Decide what I want to find and its features
peri = cv2.contourArea(c) # Find areas
return peri > thrs # Large area is considered "bad"
image = cv2.imread("025.jpg") # Load a picture
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
# First iteration - remove the large contour
###########################################################################
# Convert to binary image (all values above 20 are converted to 1 and below to 0)
ret, thresh_gray = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY)
# Use "close" morphological operation to close the gaps between contours
#
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
image_cleaned = gray
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c, 1000):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
###########################################################################
# Second iteration - remove small but bright contours
###########################################################################
# In the second iteration, use high threshold
ret, thresh_gray = cv2.threshold(image_cleaned, 150, 255, cv2.THRESH_BINARY)
# Use "dilate" with small radius
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_DILATE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2,2)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
# Remove contour if area is above 20 pixels
if is_contour_bad(c, 20):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
###########################################################################
标记的轮廓:
我是 Python 图像处理的初学者,所以我需要帮助。 我正在尝试使用下面发布的代码从我的图片中删除连接像素的区域。实际上,它有效但效果不佳。 我想要的是从我的图像中去除像素区域,例如下面报告的图片中标记为红色的区域,以获得干净的图片。 为连接像素的检测区域的尺寸设置最小和最大限制也很好。 Example of a picture with marked areas 1 Example of a picture with marked areas 2
这是我当前的代码:
### LOAD MODULES ###
import numpy as np
import imutils
import cv2
def is_contour_bad(c): # Decide what I want to find and its features
peri=cv2.contourArea(c, True) # Find areas
approx=cv2.approxPolyDP(c, 0.3*peri, True) # Set areas approximation
return not len(approx)>2 # Threshold to decide if add an area to the mask for its removing (if>2 remove)
### DATA PROCESSING ###
image=cv2.imread("025.jpg") # Load a picture
gray=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
cv2.imshow("Original image", image) # Plot
edged=cv2.Canny(gray, 50, 200, 3) # Edges of areas detection
cnts=cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
cnts=imutils.grab_contours(cnts)
mask=np.ones(image.shape[:2], dtype="uint8")*255 # Setup the mask with white background
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c):
cv2.drawContours(mask, [c], -1, 0, -1) # (source image, list of contours, with -1 all contours in [c] pass, 0 is the intensity, -1 the thickness)
image_cleaned=cv2.bitwise_and(image, image, mask=mask) # Remove the contours from the original image
cv2.imshow("Adopted mask", mask) # Plot
cv2.imshow("Cleaned image", image_cleaned) # Plot
cv2.imwrite("cleaned_025.jpg", image_cleaned) # Write in a file
您可以执行以下处理步骤:
- 使用
cv2.threshold
.
将图像阈值化为二值图像 这不是必须的,但在你的情况下,灰色阴影看起来并不重要。 - 使用closing形态学操作,用于关闭二值图像中的小间隙。
- 使用
cv2.findContours
和cv2.RETR_EXTERNAL
参数,以获得白色簇周围的轮廓(周长)。 - 将"bad contour"的逻辑修改为return true,仅当面积较大时(假设你只想清理大的三个轮廓)。
这是更新后的代码:
### LOAD MODULES ###
import numpy as np
import imutils
import cv2
def is_contour_bad(c): # Decide what I want to find and its features
peri = cv2.contourArea(c) # Find areas
return peri > 50 # Large area is considered "bad"
### DATA PROCESSING ###
image = cv2.imread("025.jpg") # Load a picture
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
# Convert to binary image (all values above 20 are converted to 1 and below to 0)
ret, thresh_gray = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY)
# Use "close" morphological operation to close the gaps between contours
#
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
image_cleaned = gray
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
#cv2.imshow("Adopted mask", mask) # Plot
cv2.imshow("Cleaned image", image_cleaned) # Plot
cv2.imwrite("cleaned_025.jpg", image_cleaned) # Write in a file
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
找到用于测试的标记轮廓:
for c in cnts:
if is_contour_bad(c):
# Draw green line for marking the contour
cv2.drawContours(image, [c], 0, (0, 255, 0), 1)
结果:
还有工作要做...
更新
两次迭代方法:
- 第一次迭代 - 删除大轮廓。
- 第二次迭代 - 移除小但 明亮 的轮廓。
代码如下:
import numpy as np
import imutils
import cv2
def is_contour_bad(c, thrs): # Decide what I want to find and its features
peri = cv2.contourArea(c) # Find areas
return peri > thrs # Large area is considered "bad"
image = cv2.imread("025.jpg") # Load a picture
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale
# First iteration - remove the large contour
###########################################################################
# Convert to binary image (all values above 20 are converted to 1 and below to 0)
ret, thresh_gray = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY)
# Use "close" morphological operation to close the gaps between contours
#
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
image_cleaned = gray
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
if is_contour_bad(c, 1000):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
###########################################################################
# Second iteration - remove small but bright contours
###########################################################################
# In the second iteration, use high threshold
ret, thresh_gray = cv2.threshold(image_cleaned, 150, 255, cv2.THRESH_BINARY)
# Use "dilate" with small radius
thresh_gray = cv2.morphologyEx(thresh_gray, cv2.MORPH_DILATE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2,2)));
#Find contours on thresh_gray, use cv2.RETR_EXTERNAL to get external perimeter
_, cnts, _ = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Find contours: a curve joining all the continuous points (along the boundary), having same color or intensity
# Loop over the detected contours
for c in cnts:
# If the contour satisfies "is_contour_bad", draw it on the mask
# Remove contour if area is above 20 pixels
if is_contour_bad(c, 20):
# Draw black contour on gray image, instead of using a mask
cv2.drawContours(image_cleaned, [c], -1, 0, -1)
###########################################################################
标记的轮廓: