如何将微调的 bert 模型的输出作为输入提供给另一个微调的 bert 模型?

How to feed the output of a finetuned bert model as inpunt to another finetuned bert model?

我在情感分析和 pos 标记任务上微调了两个独立的 bert 模型 (bert-base-uncased)。现在,我想将 pos 标记器的输出(批次、seqlength、隐藏大小)作为输入输入到情绪 model.The 原始 bert-base-uncased 模型位于 'bertModel/' 文件夹中,其中包含 'model.bin' 和 'config.json'。这是我的代码:

class DeepSequentialModel(nn.Module):
def __init__(self, sentiment_model_file, postag_model_file, device):
    super(DeepSequentialModel, self).__init__()

    self.sentiment_model = SentimentModel().to(device)
    self.sentiment_model.load_state_dict(torch.load(sentiment_model_file, map_location=device))
    self.postag_model = PosTagModel().to(device)
    self.postag_model.load_state_dict(torch.load(postag_model_file, map_location=device))

    self.classificationLayer = nn.Linear(768, 1)

def forward(self, seq, attn_masks):
    postag_context = self.postag_model(seq, attn_masks)
    sent_context = self.sentiment_model(postag_context, attn_masks)
    logits = self.classificationLayer(sent_context)
    return logits

class PosTagModel(nn.Module):
def __init__(self,):
    super(PosTagModel, self).__init__()
    self.bert_layer = BertModel.from_pretrained('bertModel/')
    self.classificationLayer = nn.Linear(768, 43)

def forward(self, seq, attn_masks):
    cont_reps, _ = self.bert_layer(seq, attention_mask=attn_masks)
    return cont_reps

class SentimentModel(nn.Module):
def __init__(self,):
    super(SentimentModel, self).__init__()
    self.bert_layer = BertModel.from_pretrained('bertModel/')
    self.cls_layer = nn.Linear(768, 1)

def forward(self, input, attn_masks):
    cont_reps, _ = self.bert_layer(encoder_hidden_states=input, encoder_attention_mask=attn_masks)
    cls_rep = cont_reps[:, 0]
    return cls_rep

但是我收到以下错误。如果有人可以帮助我,我将不胜感激。谢谢!

    cont_reps, _ = self.bert_layer(encoder_hidden_states=input, encoder_attention_mask=attn_masks)
    result = self.forward(*input, **kwargs)
    TypeError: forward() got an unexpected keyword argument 'encoder_hidden_states'

为了将此也表述为答案,并使其对未来的访问者正确可见,forward() 调用变形金刚 does not support these arguments in version 2.1.1,或任何更早的版本,就此而言。请注意,我评论中的 link 实际上指向不同的前向函数,但除此之外,这一点仍然成立。

encoder_hidden_states 传递给 forward()first possible in version 2.2.0