忽略已完成的取件交付或工具的数量来最大化利润

Maximize profit with disregard to number of pickup-delivery done OR tools

我正在努力实现利润最大化,我是否交付所有皮卡交付并不重要。

我尝试设置SetArcCostEvaluatorOfAllVehicles使用负利润而不是成本回调;但是,这不起作用,我经常得到 no solution,我的想法是成本不能为负。这是正确的吗?

添加带有利润回调的AddVariableMaximizedByFinalizer 似乎不起作用,因为在已经找到解决方案后运行s,因此它不会消除不盈利的交付。这是正确的吗?

我的直觉是我需要设置一个指标(利润维度?)来评估求解器的性能,并使用 AddDisjunction 将缺少取货的惩罚设置为 0,以消除无利可图的交付.这样的事情可能吗?如果不是,推荐的方法是什么?

编辑:

这是我的代码,它是对 https://developers.google.com/optimization/routing/pickup_delivery

的非常小的修改
"""Simple Pickup Delivery Problem (PDP)."""

from __future__ import print_function
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [
            0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
            468, 776, 662
        ],
        [
            548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
            1016, 868, 1210
        ],
        [
            776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
            1130, 788, 1552, 754
        ],
        [
            696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
            1164, 560, 1358
        ],
        [
            582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
            1050, 674, 1244
        ],
        [
            274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
            514, 1050, 708
        ],
        [
            502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
            514, 1278, 480
        ],
        [
            194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
            662, 742, 856
        ],
        [
            308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
            320, 1084, 514
        ],
        [
            194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
            274, 810, 468
        ],
        [
            536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
            730, 388, 1152, 354
        ],
        [
            502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
            308, 650, 274, 844
        ],
        [
            388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
            536, 388, 730
        ],
        [
            354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
            342, 422, 536
        ],
        [
            468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
            342, 0, 764, 194
        ],
        [
            776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
            388, 422, 764, 0, 798
        ],
        [
            662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
            536, 194, 798, 0
        ],
    ]
    data['pickups_deliveries'] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]
    data['num_vehicles'] = 4
    data['depot'] = 0

    data['revenue'] = {6: 1000000,
                       10: 100,
                       3: 100,
                       9: 100,
                       8: 100,
                       11: 100,
                       12: 100,
                       14: 100
                       }

    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    total_distance = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += ' {} -> '.format(manager.IndexToNode(index))
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += '{}\n'.format(manager.IndexToNode(index))
        plan_output += 'Distance of the route: {}m\n'.format(route_distance)
        print(plan_output)
        total_distance += route_distance
    print('Total Distance of all routes: {}m'.format(total_distance))


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Define cost of each arc.

    def distance_callback(from_index, to_index):
        """Returns the manhattan distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = 'Distance'
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name)
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Define Transportation Requests.
    for request in data['pickups_deliveries']:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(
                delivery_index))
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

    for node, revenue in data["revenue"].items():
        routing.AddDisjunction(
            [manager.NodeToIndex(node)], revenue
        )

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == '__main__':
    main()

我补充说:

data['revenue'] = {6: 1000000,
                   10: 100,
                   3: 100,
                   9: 100,
                   8: 100,
                   11: 100,
                   12: 100,
                   14: 100
                   }

for node, revenue in data["revenue"].items():
    routing.AddDisjunction(
        [manager.NodeToIndex(node)], revenue)

当我 运行 使用此代码时,所有取件都会送达(即使我将 revenue 硬编码为 0)。我正在寻找一种只交付 [1, 6] 的解决方案,因为它是唯一能带来利润的解决方案。

我想我知道我的问题出在哪里。设置取件交付约束后,根据这些约束将成本降至最低。并且由于可以满足所有这些限制条件,所以所有取件都可以送达。

有没有办法软化取件-送货约束,并专注于最小化成本(加上惩罚)?

如果您为交付添加 0 的惩罚,求解器将很乐意放弃所有这些。 此外,非营利性是在路线的背景下。因此,您需要调整惩罚以获得您想要的结果。

回复编辑:

要使 PDP 变软,您需要添加 2 个析取,一个用于取货,一个用于送货。

这是我最终使用的代码:

    """Simple Pickup Delivery Problem (PDP)."""

    from __future__ import print_function
    from ortools.constraint_solver import routing_enums_pb2
    from ortools.constraint_solver import pywrapcp
    
    
    def create_data_model():
        """Stores the data for the problem."""
        data = {}
        data['distance_matrix'] = [
            [
                0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
                468, 776, 662
            ],
            [
                548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
                1016, 868, 1210
            ],
            [
                776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
                1130, 788, 1552, 754
            ],
            [
                696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
                1164, 560, 1358
            ],
            [
                582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
                1050, 674, 1244
            ],
            [
                274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
                514, 1050, 708
            ],
            [
                502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
                514, 1278, 480
            ],
            [
                194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
                662, 742, 856
            ],
            [
                308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
                320, 1084, 514
            ],
            [
                194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
                274, 810, 468
            ],
            [
                536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
                730, 388, 1152, 354
            ],
            [
                502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
                308, 650, 274, 844
            ],
            [
                388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
                536, 388, 730
            ],
            [
                354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
                342, 422, 536
            ],
            [
                468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
                342, 0, 764, 194
            ],
            [
                776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
                388, 422, 764, 0, 798
            ],
            [
                662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
                536, 194, 798, 0
            ],
        ]
        data['pickups_deliveries'] = [
            [1, 6],
            [2, 10],
            [4, 3],
            [5, 9],
            [7, 8],
            [15, 11],
            [13, 12],
            [16, 14],
        ]
        data['num_vehicles'] = 4
        data['depot'] = 0
    
        data['revenue'] = {(1, 6): 1000000,
                           (2, 10): 100,
                           (4, 3): 100,
                           (5, 9): 10000,
                           (7, 8): 100,
                           (15, 11): 100,
                           (13, 12): 100,
                           (16, 14): 100
                           }
    
        return data
    
    
    def print_solution(data, manager, routing, solution):
        """Prints solution on console."""
        total_distance = 0
        for vehicle_id in range(data['num_vehicles']):
            index = routing.Start(vehicle_id)
            plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
            route_distance = 0
            while not routing.IsEnd(index):
                plan_output += ' {} -> '.format(manager.IndexToNode(index))
                previous_index = index
                index = solution.Value(routing.NextVar(index))
                route_distance += routing.GetArcCostForVehicle(
                    previous_index, index, vehicle_id)
            plan_output += '{}\n'.format(manager.IndexToNode(index))
            plan_output += 'Distance of the route: {}m\n'.format(route_distance)
            print(plan_output)
            total_distance += route_distance
        print('Total Distance of all routes: {}m'.format(total_distance))
    
    
    def main():
        """Entry point of the program."""
        # Instantiate the data problem.
        data = create_data_model()
    
        # Create the routing index manager.
        manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                               data['num_vehicles'], data['depot'])
    
        # Create Routing Model.
        routing = pywrapcp.RoutingModel(manager)
    
        # Define cost of each arc.
    
        def distance_callback(from_index, to_index):
            """Returns the manhattan distance between the two nodes."""
            # Convert from routing variable Index to distance matrix NodeIndex.
            from_node = manager.IndexToNode(from_index)
            to_node = manager.IndexToNode(to_index)
            return data['distance_matrix'][from_node][to_node]
    
        transit_callback_index = routing.RegisterTransitCallback(distance_callback)
        routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
    
        # Add Distance constraint.
        dimension_name = 'Distance'
        routing.AddDimension(
            transit_callback_index,
            0,  # no slack
            3000,  # vehicle maximum travel distance
            True,  # start cumul to zero
            dimension_name)
        distance_dimension = routing.GetDimensionOrDie(dimension_name)
        distance_dimension.SetGlobalSpanCostCoefficient(100)
    
        # Define Transportation Requests.
        for request in data['pickups_deliveries']:
            pickup_index = manager.NodeToIndex(request[0])
            delivery_index = manager.NodeToIndex(request[1])
            routing.AddPickupAndDelivery(pickup_index, delivery_index)
            routing.solver().Add(
                routing.VehicleVar(pickup_index) == routing.VehicleVar(
                    delivery_index))
            routing.solver().Add(
                distance_dimension.CumulVar(pickup_index) <=
                distance_dimension.CumulVar(delivery_index))
    
        for node, revenue in data["revenue"].items():
            start, end = node
            routing.AddDisjunction(
                [manager.NodeToIndex(end)], revenue
            )
    
            routing.AddDisjunction(
                [manager.NodeToIndex(start)], 0
            )
    
        # Setting first solution heuristic.
        search_parameters = pywrapcp.DefaultRoutingSearchParameters()
        search_parameters.first_solution_strategy = (
            routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION)
    
        # Solve the problem.
        solution = routing.SolveWithParameters(search_parameters)
    
        # Print solution on console.
        if solution:
            print_solution(data, manager, routing, solution)
    
    
    if __name__ == '__main__':
        main()