Python:基于深色图像上特定颜色的矩形轮廓(OpenCV)

Python: Contour around rectangle based on specific color on a dark image (OpenCV)

因为我想在 Python 中提高我的 OpenCV 技能,所以我想知道从主要为深色的图像中提取特定灰色调的最佳方法是什么。

首先,我创建了一个测试图像,以便使用 OpenCV 测试不同的方法:

假设我想在此图像中提取特定颜色并为其添加边框。现在我选择了中间的灰色矩形,颜色为 (33, 33, 34 RGB),见下图:

(这是没有红色边框的图片,以便您测试您的想法:https://i.stack.imgur.com/Zf8Vb.png)

这是我迄今为止尝试过的方法,但效果不佳:

img = cv2.imread(path) #Read input image
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Convert from BGR to HSV color space
saturation_plane = hsv[:, :, 1] # all black/white/gray pixels are zero, and colored pixels are above zero
_, thresh = cv2.threshold(saturation_plane, 8, 255, cv2.THRESH_BINARY) # Apply threshold on s
contours = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # draw all contours 
contours = contours[0] if len(contours) == 2 else contours[1]
result = img.copy()

for contour in contours:
   (x, y, w, h) = cv2.boundingRect(contour) # compute the bounding box for the contour
   if width is equal to the width of the rectangle i want to extract:
       draw contour

如果矩形的大小不固定,我就无法通过它width/height检测到怎么办?此外,将图像转换为灰度而不是 HSV 更好吗?我是新手,我想听听您的实现方式。

提前致谢。

如果知道具体的颜色,可以从gray = np.all(img == (34, 33, 33), 2)开始。

结果是一个逻辑矩阵,其中 True 其中 BGR = (34, 33, 33),否则为 False。
注意:OpenCV 颜色排序是 BGR 而不是 RGB。

  • 将逻辑矩阵转换为uint8gray = gray.astype(np.uint8)*255
  • gray 图片上使用 findContours

如果您想找到蓝色矩形而不是具有非常特定 RGB 值的灰色矩形,则将图像转换为 HSV 不会有用。

以下代码找到具有最大尺寸和颜色(33、33、34 RGB)的轮廓:

import numpy as np
import cv2

# Read input image
img = cv2.imread('rectangles.png')

# Gel all pixels in the image - where BGR = (34, 33, 33), OpenCV colors order is BGR not RGB
gray = np.all(img == (34, 33, 33), 2)  # gray is a logical matrix with True where BGR = (34, 33, 33).

# Convert logical matrix to uint8
gray = gray.astype(np.uint8)*255

# Find contours
cnts = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]  # Use index [-2] to be compatible to OpenCV 3 and 4

# Get contour with maximum area
c = max(cnts, key=cv2.contourArea)

x, y, w, h = cv2.boundingRect(c)

# Draw green rectangle for testing
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), thickness = 2)

# Show result
cv2.imshow('gray', gray)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

灰色:

img:


如果你不知道大多数深色的具体颜色,你可以找到所有的轮廓,并搜索灰度值最低的:

import numpy as np
import cv2

# Read input image
img = cv2.imread('rectangles.png')

# Convert from BGR to Gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Apply threshold on gray
_, thresh = cv2.threshold(gray, 8, 255, cv2.THRESH_BINARY)

# Find contours on thresh
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]  # Use index [-2] to be compatible to OpenCV 3 and 4

min_level = 255
min_c = []

#Iterate contours, and find the darkest:
for c in cnts:
    x, y, w, h = cv2.boundingRect(c)

    # Ignore contours that are very thin (like edges)
    if w > 5 and h > 5:
        level = gray[y+h//2, x+w//2]  # Get gray level of center pixel

        if level < min_level:
            # Update min_level abd min_c
            min_level = level
            min_c = c

x, y, w, h = cv2.boundingRect(min_c)

# Draw red rectangle for testing
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), thickness = 2)

# Show result
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果: