如何让 Plotly 中的多面图拥有自己的 YAxes 刻度标签?
How can I make faceted plots in Plotly have their own individual YAxes tick labels?
当我使用 Plotly express 绘制具有不同范围的不同参数时 - 在下面的示例中,BloodPressureHigh、Height(cm)、Weight(kg) 和 BloodPressureLow - 使用 facet_col
参数,我无法获取结果图以显示每个多面图的唯一 YTicks。 fig
对象是否有一种简单的方法在生成的多面图中显示每组 YTicks?否则,正如您在结果图像中看到的那样,不清楚每个箱线图是否在其自己独特的 YAxis 上。
import plotly.express as px
import pandas as pd
temp = [
{"Clinic": "A", "Subject": "Bill", "Height(cm)": 182, "Weight(kg)": 101, "BloodPressureHigh": 128, "BloodPressureLow": 90},
{"Clinic": "A", "Subject": "Susie", "Height(cm)": 142, "Weight(kg)": 67, "BloodPressureHigh": 120, "BloodPressureLow": 70},
{"Clinic": "B", "Subject": "John", "Height(cm)": 202, "Weight(kg)": 89, "BloodPressureHigh": 118, "BloodPressureLow": 85},
{"Clinic": "B", "Subject": "Stacy", "Height(cm)": 156, "Weight(kg)": 78, "BloodPressureHigh": 114, "BloodPressureLow": 76},
{"Clinic": "B", "Subject": "Lisa", "Height(cm)": 164, "Weight(kg)": 59, "BloodPressureHigh": 112, "BloodPressureLow": 74}
]
df = pd.DataFrame(temp)
# Melt the dataframe so I can use plotly express to plot distributions of all variables
df_melted = df.melt(id_vars=["Clinic", "Subject"])
# Plot distributions, with different parameters in different columns
fig = px.box(df_melted, x="Clinic", y="value",
facet_col="variable", boxmode="overlay"
)
# Update the YAxes so that the faceted column plots no longer share common YLimits
fig.update_yaxes(matches=None)
# Last step needed: Add tick labels to each yaxis so that the difference in YLimits is clear?
这对你有帮助吗?
fig = px.box(df_melted, x="Clinic", y="value",
facet_col="variable", boxmode="overlay")
fig.update_yaxes(matches=None)
fig.for_each_yaxis(lambda yaxis: yaxis.update(showticklabels=True))
fig.show()
当我使用 Plotly express 绘制具有不同范围的不同参数时 - 在下面的示例中,BloodPressureHigh、Height(cm)、Weight(kg) 和 BloodPressureLow - 使用 facet_col
参数,我无法获取结果图以显示每个多面图的唯一 YTicks。 fig
对象是否有一种简单的方法在生成的多面图中显示每组 YTicks?否则,正如您在结果图像中看到的那样,不清楚每个箱线图是否在其自己独特的 YAxis 上。
import plotly.express as px
import pandas as pd
temp = [
{"Clinic": "A", "Subject": "Bill", "Height(cm)": 182, "Weight(kg)": 101, "BloodPressureHigh": 128, "BloodPressureLow": 90},
{"Clinic": "A", "Subject": "Susie", "Height(cm)": 142, "Weight(kg)": 67, "BloodPressureHigh": 120, "BloodPressureLow": 70},
{"Clinic": "B", "Subject": "John", "Height(cm)": 202, "Weight(kg)": 89, "BloodPressureHigh": 118, "BloodPressureLow": 85},
{"Clinic": "B", "Subject": "Stacy", "Height(cm)": 156, "Weight(kg)": 78, "BloodPressureHigh": 114, "BloodPressureLow": 76},
{"Clinic": "B", "Subject": "Lisa", "Height(cm)": 164, "Weight(kg)": 59, "BloodPressureHigh": 112, "BloodPressureLow": 74}
]
df = pd.DataFrame(temp)
# Melt the dataframe so I can use plotly express to plot distributions of all variables
df_melted = df.melt(id_vars=["Clinic", "Subject"])
# Plot distributions, with different parameters in different columns
fig = px.box(df_melted, x="Clinic", y="value",
facet_col="variable", boxmode="overlay"
)
# Update the YAxes so that the faceted column plots no longer share common YLimits
fig.update_yaxes(matches=None)
# Last step needed: Add tick labels to each yaxis so that the difference in YLimits is clear?
这对你有帮助吗?
fig = px.box(df_melted, x="Clinic", y="value",
facet_col="variable", boxmode="overlay")
fig.update_yaxes(matches=None)
fig.for_each_yaxis(lambda yaxis: yaxis.update(showticklabels=True))
fig.show()