Scipy 余弦相似度与 sklearn 余弦相似度

Scipy cosine similarity vs sklearn cosine similarity

我注意到 scipysklearn 都有余弦 similarity/cosine 距离函数。我想测试每个向量对的速度:

setup1 = "import numpy as np; arrs1 = [np.random.rand(400) for _ in range(60)];arrs2 = [np.random.rand(400) for _ in range(60)]"
setup2 = "import numpy as np; arrs1 = [np.random.rand(400) for _ in range(60)];arrs2 = [np.random.rand(400) for _ in range(60)]"

import1 = "from sklearn.metrics.pairwise import cosine_similarity"
stmt1 = "[float(cosine_similarity(arr1.reshape(1,-1), arr2.reshape(1,-1))) for arr1, arr2 in zip(arrs1, arrs2)]"

import2 = "from scipy.spatial.distance import cosine"
stmt2 = "[float(1 - cosine(arr1, arr2)) for arr1, arr2 in zip(arrs1, arrs2)]"

import timeit
print("sklearn: ", timeit.timeit(stmt1, setup=import1 + ";" + setup1, number=1000))
print("scipy:   ", timeit.timeit(stmt2, setup=import2 + ";" + setup2, number=1000))
sklearn:  11.072769448000145
scipy:    1.9755544730005568

sklearn 的运行速度几乎比 scipy 慢 10 倍(即使您删除了 sklearn 示例的数组重塑并生成已经处于正确形状的数据)。为什么一个明显比另一个慢?

如评论部分所述,我认为比较不公平,主要是因为 sklearn.metrics.pairwise.cosine_similarity 旨在比较给定输入二维数组中样本的成对 distance/similarity .另一方面,scipy.spatial.distance.cosine 旨在计算两个一维数组的余弦距离。

也许更公平的比较是使用 scipy.spatial.distance.cdistsklearn.metrics.pairwise.cosine_similarity,其中两者都计算给定数组中样本的成对距离。然而,令我惊讶的是,这表明 sklearn 实现比 scipy 实现快得多(我目前没有对此的解释!)。这是实验:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist

x = np.random.rand(1000,1000)
y = np.random.rand(1000,1000)

def sklearn_cosine():
    return cosine_similarity(x, y)

def scipy_cosine():
    return 1. - cdist(x, y, 'cosine')

# Make sure their result is the same.
assert np.allclose(sklearn_cosine(), scipy_cosine())

这里是计时结果:

%timeit sklearn_cosine()
10 loops, best of 3: 74 ms per loop

%timeit scipy_cosine()
1 loop, best of 3: 752 ms per loop