在 pandas binning 中输出 bins 和 labels 列

Output both bins and labels column in pandas binning

我有一个数据框列,我想对其执行分箱,例如:

df.head
X
4.6
2.5
3.1
1.7

我想要一列用于 bin 范围和一列用于标签,如下:

df.head
X bin label
4.6 (4,5] 5
2.5 (2,3] 3
3.1 (3,4] 4
1.7 (1,2] 2

显然,按如下方式设置 label 参数只会产生一列用于 bin 标签,但不再用于范围。

df['bin'] = df.X.apply(pd.cut, labels=np.arange(5))

是否有更优雅的解决方案,而不是 运行 pd.cut 2 列 2 次?

谢谢

如果允许 pd.cut 动态设置 bin 边缘,则可以使用 retbins 标志。来自 pd.cut documentation:

retbins: bool, default False
    Whether to return the bins or not. Useful when bins is provided as a scalar.

这将 return 第二个结果:

bins: numpy.ndarray or IntervalIndex.
    The computed or specified bins. Only returned when
    retbins=True. For scalar or sequence bins, this is
    an ndarray with the computed bins. If set
    duplicates=drop, bins will drop non-unique bin. For
    an IntervalIndex bins, this is equal to bins.

您可以使用它来将 bin 边缘分配给框架:

assignments, edges = pd.cut(df.X, bins=5, labels=False, retbins=True)
df['label'] = assignments
df['bin_floor'] = edges[assignments]
df['bin_ceil'] = edges[assignments + 1]

您的评论表明您想在 groupby 操作中使用它。在这种情况下,您可以将上面的内容包装在一个函数中:

def assign_dynamic_bin_ids_and_labels(
    df,
    value_col,
    nbins,
    label_col='label',
    bin_floor_col='bin_floor',
    bin_ceil_col='bin_ceil',
):
    assignments, edges = pd.cut(
        df[value_col], bins=5, labels=False, retbins=True
    )

    df[label_col] = assignments
    df[bin_floor_col] = edges[assignments]
    df[bin_ceil_col] = edges[assignments + 1]

    return df

df.groupby('id').apply(assign_dynamic_bin_ids_and_labels, 'X', 5)