如何在 pandas 数据框的单个列中的行上应用函数?
How to apply a function over rows within a single column of a pandas data frame?
我正在使用一个地址解析库,它以下列方式接受字符串
import pyap
test_address = """
4998 Stairstep Lane Toronto ON
"""
addresses = pyap.parse(test_address, country='CA')
for address in addresses:
# shows found address
print(address)
# shows address parts
print(address.as_dict())
我想在单个 pandas 数据帧的每一行上使用此函数 column.The 数据帧包含两列 (id,address) 这是我目前所拥有的
addresses.apply(lambda x: pyap.parse(x['address'], country='CA'),axis=1)
虽然这会运行,但它会产生一系列而不是 'pyap.address.Address'
你必须做你所做的,但反过来:
假设您的数据框是这样的:
d = [{'id': '1', 'address': '4998 Stairstep Lane Toronto ON'}, {'id': '2', 'address': '1234 Stairwell Road Toronto ON'}]
df = pd.DataFrame(d)
df
id address
0 1 4998 Stairstep Lane Toronto ON
1 2 1234 Stairwell Road Toronto ON
将这些地址提取到列表中
address_list = df['address'].tolist()
然后用 pyapp 处理每一个:
for al in address_list:
addresses = pyap.parse(al, country='CA')
for address in addresses:
print(address)
print(address.as_dict())
如果有效请告诉我。
我正在使用一个地址解析库,它以下列方式接受字符串
import pyap
test_address = """
4998 Stairstep Lane Toronto ON
"""
addresses = pyap.parse(test_address, country='CA')
for address in addresses:
# shows found address
print(address)
# shows address parts
print(address.as_dict())
我想在单个 pandas 数据帧的每一行上使用此函数 column.The 数据帧包含两列 (id,address) 这是我目前所拥有的
addresses.apply(lambda x: pyap.parse(x['address'], country='CA'),axis=1)
虽然这会运行,但它会产生一系列而不是 'pyap.address.Address'
你必须做你所做的,但反过来: 假设您的数据框是这样的:
d = [{'id': '1', 'address': '4998 Stairstep Lane Toronto ON'}, {'id': '2', 'address': '1234 Stairwell Road Toronto ON'}]
df = pd.DataFrame(d)
df
id address
0 1 4998 Stairstep Lane Toronto ON
1 2 1234 Stairwell Road Toronto ON
将这些地址提取到列表中
address_list = df['address'].tolist()
然后用 pyapp 处理每一个:
for al in address_list:
addresses = pyap.parse(al, country='CA')
for address in addresses:
print(address)
print(address.as_dict())
如果有效请告诉我。