避免 IDT 挂钩中的页面错误

Avoiding page faults in IDT hooking

注意:我在 FreeBSD 上 运行,但我也包含了 Linux 作为标签,因为这个问题有点普遍并且 Linux我对特定的解决方案很感兴趣。

编辑:只是为了确认问题不是 FreeBSD 特有的,我将模块移植到 Linux,并且确实得到了完全相同的结果行为。 Linux 版本模块的代码如下;它本质上是完全一样的,唯一的主要区别是 IDT 显然在 Linux 中被赋予了只读保护,因此我必须禁用 cr0 中的写保护位才能使代码正常工作.


我正在学习一些有关 x86-64 架构上的内核开发的知识,目前正在阅读英特尔开发人员手册中有关中断处理的内容。作为实践,我正在尝试编写一个小的内核模块来挂钩 IDT 中的条目,但是 运行 遇到了问题。我的一般问题是:如果您使用 lidt 来更改整个 idtr 而不是,您如何确保钩子的代码(或新 IDT table 的数据)只是覆盖 IDT 的单个条目)总是存在于 RAM 中?我一直 运行 遇到的问题是,我将更改 IDT 条目,触发相应的中断,然后出现双重错误,因为我的挂钩代码未映射到 RAM 中。一般有什么方法可以避免这个问题?


对于我的具体情况,以下是我编写的 FreeBSD LKM 代码,它只是覆盖了 IDT 条目中列出的地址以处理零除数错误,并将其替换为 asm_hook,目前只是无条件地 jmp 返回到原始中断处理程序。 (以后我当然会增加更多的功能。)

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>
#include <sys/systm.h>


//idt entry
struct idte_t {
    unsigned short offset_0_15;
    unsigned short segment_selector;
    unsigned char ist;              //interrupt stack table
    unsigned char type:4;
    unsigned char zero_12:1;
    unsigned char dpl:2;            //descriptor privilege level
    unsigned char p:1;              //present flag
    unsigned short offset_16_31;
    unsigned int offset_32_63;
    unsigned int rsv; }
    __attribute__((packed))
    *zd_idte;

#define ZD_INT 0x00
unsigned long idte_offset;          //contains absolute address of original interrupt handler

//idt register
struct idtr_t {
    unsigned short lim_val;
    struct idte_t *addr; }
    __attribute__((packed))
    idtr;

__asm__(
    ".text;"
    ".global asm_hook;"
"asm_hook:;"
    "jmp *(idte_offset);");
extern void asm_hook(void);


static int
init() {
    __asm__ __volatile__ (
        "cli;"
        "sidt %0;"
        "sti;"
        :: "m"(idtr));
    uprintf("[*]  idtr dump\n"
            "[**] address:\t%p\n"
            "[**] lim val:\t0x%x\n"
            "[*]  end dump\n\n",
            idtr.addr, idtr.lim_val);
    zd_idte=(idtr.addr)+ZD_INT;

    idte_offset=(long)(zd_idte->offset_0_15)|((long)(zd_idte->offset_16_31)<<16)|((long)(zd_idte->offset_32_63)<<32);
    uprintf("[*]  old idt entry %d:\n"
            "[**] addr:\t%p\n"
            "[**] segment:\t0x%x\n"
            "[**] ist:\t%d\n"
            "[**] type:\t%d\n"
            "[**] dpl:\t%d\n"
            "[**] p:\t\t%d\n"
            "[*]  end dump\n\n",
            ZD_INT, (void *)idte_offset, zd_idte->segment_selector, 
            zd_idte->ist, zd_idte->type, zd_idte->dpl, zd_idte->p);
    if(!zd_idte->p) {
        uprintf("[*] fatal: handler segment not present\n");
        return ENOSYS; }

    __asm__ __volatile__("cli");
    zd_idte->offset_0_15=((unsigned long)(&asm_hook))&0xffff;
    zd_idte->offset_16_31=((unsigned long)(&asm_hook)>>16)&0xffff;
    zd_idte->offset_32_63=((unsigned long)(&asm_hook)>>32)&0xffffffff;
    __asm__ __volatile__("sti");
    uprintf("[*]  new idt entry %d:\n"
            "[**] addr:\t%p\n"
            "[**] segment:\t0x%x\n"
            "[**] ist:\t%d\n"
            "[**] type:\t%d\n"
            "[**] dpl:\t%d\n"
            "[**] p:\t\t%d\n"
            "[*]  end dump\n\n",
            ZD_INT, (void *)(\
            (long)zd_idte->offset_0_15|((long)zd_idte->offset_16_31<<16)|((long)zd_idte->offset_32_63<<32)),
            zd_idte->segment_selector, zd_idte->ist, zd_idte->type, zd_idte->dpl, zd_idte->p);

    return 0; }

static void
fini() {
    __asm__ __volatile__("cli");
    zd_idte->offset_0_15=idte_offset&0xffff;
    zd_idte->offset_16_31=(idte_offset>>16)&0xffff;
    zd_idte->offset_32_63=(idte_offset>>32)&0xffffffff;
    __asm__ __volatile__("sti"); }

static int
load(struct module *module, int cmd, void *arg) {
    int error=0;
    switch(cmd) {
        case MOD_LOAD:
            error=init();
            break;
        case MOD_UNLOAD:
            fini();
            break;
        default:
            error=EOPNOTSUPP;
            break; }
    return error; }

static moduledata_t idt_hook_mod = {
    "idt_hook",
    load,
    NULL };

DECLARE_MODULE(idt_hook, idt_hook_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

(我还编写了另一个 LKM,它使用 malloc(9) 创建了一个全新的 IDT table 并使用 lidt 将 table 加载到 idtr ,但在我看来,这是一种较差的方法,因为它只会改变其 运行 所在的特定 CPU 核心上的 IDT,因此在多处理器系统中无法可靠地工作。除非我有什么缺少这是一个准确的评估吗?)

无论如何,编译代码和加载内核模块没有问题:

# kldload ./idt_hook.ko
[*]  idtr dump
[**] address:   0xffffffff81fb2c40
[**] lim val:   0xfff
[*]  end dump

[*]  old idt entry 0:
[**] addr:      0xffffffff81080f90
[**] segment:   0x20
[**] ist:       0
[**] type:      14
[**] dpl:       0
[**] p:         1
[*]  end dump

[*]  new idt entry 0:
[**] addr:      0xffffffff8281d000
[**] segment:   0x20
[**] ist:       0
[**] type:      14
[**] dpl:       0
[**] p:         1
[*]  end dump

然而,当我用下面的代码测试钩子时,内核挂起:

#include <stdio.h>

int main() {
    int x=1, y=0;
    printf("x/y=%d\n", x/y);
    return 0; }

为了了解发生了什么,我启动了 VirtualBox 内置调试​​器,并在 IDT 的双故障异常处理程序上设置了一个断点(条目 8)。调试显示我的 LKM 正确地改变了 IDT,但是 运行 上面的零除数代码触发了双重错误。当我试图访问 0xffffffff8281d000(我的 asm_hook 代码的地址)处的内存时,我意识到了这个原因,这在 VirtualBox 调试器中触发了 VERR_PAGE_TABLE_NOT_PRESENT 错误。所以,除非我误解了什么,显然问题确实是我的 asm_hook 在某个时候从内存中删除了。关于如何解决这个问题的任何想法?例如,有没有办法告诉 FreeBSD 内核永远不应该从 RAM 中取消映射特定页面?


编辑:Nate Eldredge 在下面的评论中帮助我发现了我的代码中的一些错误(现已更正),但不幸的是问题仍然存在。为了提供更多的调试细节:首先我加载了内核模块,然后我在 VirtualBox 调试器中的 asm_hook 代码 (0xffffffff8281d000) 的列出地址上设置了一个断点。我通过反汇编该地址的内存确认它确实包含 asm_hook 的代码。 (虽然,正如 Nate 指出的那样,它恰好放在页面边界上有点奇怪——有人知道为什么会这样吗?)

无论如何,当我触发零除数中断时,不幸的是断点从未命中,而且,一旦我进入双重故障中断处理程序,当我尝试访问 [=22= 处的内存时] VERR_PAGE_TABLE_NOT_PRESENT 错误仍然存​​在。

的确,FreeBSD 设计的一个不寻常(?)特征是从 RAM 交换其内核的 out/unmap 部分,所以也许更好的问题是“是什么导致了这个页面错误?”


编辑: 这是移植到 Linux:

的模块版本
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <asm/io.h>

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Hooks the zero divisor IDT entry");
MODULE_VERSION("0.01");


struct idte_t {
    unsigned short offset_0_15;
    unsigned short segment_selector;
    unsigned char ist;              //interrupt stack table
    unsigned char type:4;
    unsigned char zero_12:1;
    unsigned char dpl:2;            //descriptor privilege level
    unsigned char p:1;              //present flag
    unsigned short offset_16_31;
    unsigned int offset_32_63;
    unsigned int rsv; }
    __attribute__((packed))
    *zd_idte;

#define ZD_INT 0x00
unsigned long idte_offset;          //contains absolute address of original interrupt handler
struct idtr_t {
    unsigned short lim_val;
    struct idte_t *addr; }
    __attribute__((packed))
    idtr;

__asm__(
    ".text;"
    ".global asm_hook;"
"asm_hook:;"
    "jmp *(idte_offset);");
extern void asm_hook(void);


static int __init
idt_init(void) {
    __asm__ __volatile__ (
        "cli;"
        "sidt %0;"
        "sti;"
        :: "m"(idtr));
    printk("[*]  idtr dump\n"
           "[**] address:\t%px\n"
           "[**] lim val:\t0x%x\n"
           "[*]  end dump\n\n",
           idtr.addr, idtr.lim_val);
    zd_idte=(idtr.addr)+ZD_INT;

    idte_offset=(long)(zd_idte->offset_0_15)|((long)(zd_idte->offset_16_31)<<16)|((long)(zd_idte->offset_32_63)<<32);
    printk("[*]  old idt entry %d:\n"
           "[**] addr:\t%px\n"
           "[**] segment:\t0x%x\n"
           "[**] ist:\t%d\n"
           "[**] type:\t%d\n"
           "[**] dpl:\t%d\n"
           "[**] p:\t\t%d\n"
           "[*]  end dump\n\n",
           ZD_INT, (void *)idte_offset, zd_idte->segment_selector, 
           zd_idte->ist, zd_idte->type, zd_idte->dpl, zd_idte->p);
    if(!zd_idte->p) {
        printk("[*] fatal: handler segment not present\n");
        return ENOSYS; }

    unsigned long cr0;
    __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0));
    cr0 &= ~(long)0x10000;
    __asm__ __volatile__("mov %0, %%cr0" :: "r"(cr0));
    __asm__ __volatile__("cli");
    zd_idte->offset_0_15=((unsigned long)(&asm_hook))&0xffff;
    zd_idte->offset_16_31=((unsigned long)(&asm_hook)>>16)&0xffff;
    zd_idte->offset_32_63=((unsigned long)(&asm_hook)>>32)&0xffffffff;
    __asm__ __volatile__("sti");
    cr0 |= 0x10000;
    __asm__ __volatile__("mov %0, %%cr0" :: "r"(cr0));
    printk("[*]  new idt entry %d:\n"
           "[**] addr:\t%px\n"
           "[**] segment:\t0x%x\n"
           "[**] ist:\t%d\n"
           "[**] type:\t%d\n"
           "[**] dpl:\t%d\n"
           "[**] p:\t\t%d\n"
           "[*]  end dump\n\n",
           ZD_INT, (void *)(\
           (long)zd_idte->offset_0_15|((long)zd_idte->offset_16_31<<16)|((long)zd_idte->offset_32_63<<32)),
           zd_idte->segment_selector, zd_idte->ist, zd_idte->type, zd_idte->dpl, zd_idte->p);

    return 0; }

static void __exit
idt_fini(void) {
    unsigned long cr0;
    __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0));
    cr0 &= ~(long)0x10000;
    __asm__ __volatile__("mov %0, %%cr0" :: "r"(cr0));
    __asm__ __volatile__("cli");
    zd_idte->offset_0_15=idte_offset&0xffff;
    zd_idte->offset_16_31=(idte_offset>>16)&0xffff;
    zd_idte->offset_32_63=(idte_offset>>32)&0xffffffff;
    __asm__ __volatile__("sti");
    cr0 |= 0x10000;
    __asm__ __volatile__("mov %0, %%cr0" :: "r"(cr0)); }

module_init(idt_init);
module_exit(idt_fini);

编辑 2020 年 7 月 18 日:很抱歉让一个死人复活 post,但事实上这个故事还有更多内容。简而言之,问题实际上不是出在 VirtualBox 上,而是我的代码没有考虑崩溃缓解技术,尤其是内核页面 Table 隔离。显然,默认情况下 Qemu 不启用 KPTI,这就是为什么问题看起来是特定于管理程序的原因。但是,启用 OS X 的“Hypervisor Framework”与 Qemu(默认情况下启用 KPTI)会导致模块再次失败。经过大量调查,我终于意识到问题出在 KPTI 上;显然可加载的内核模块——像许多内核代码一样——不包含在用户空间页表中。

为了解决这个问题,我不得不编写一个新模块来覆盖内核现有 IRQ 处理程序的代码( 包含在用户空间页表中),其中包含一个片段以更改 cr3 到将包含我的内核模块的页面条目的值。 (这是下面代码中的 stub。)然后我跳转到 asm_hook——它现在被分页了——递增我的计数器变量,恢复 cr3 的旧值,然后跳转到一个现有的内核 IRQ 处理程序。 (由于除法错误处理程序被覆盖,我改为跳转到软断点处理程序。)代码如下,可以使用相同的除零程序进行测试。

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/kallsyms.h>
#include <asm/io.h>
#include "utilities.h"

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Atticus Stonestrom");
MODULE_DESCRIPTION("Hooks the zero divisor IDT entry");


struct idte_t *idte;                  //points to the start of the IDT

#define ZD_INT 0x00
#define BP_INT 0x03
unsigned long zd_handler;             //contains absolute address of division error IRQ handler
unsigned long bp_handler;             //contains absolute address of soft breakpoint IRQ handler
#define STUB_SIZE 0x2b                //includes extra 8 bytes for the old value of cr3
unsigned char orig_bytes[STUB_SIZE];  //contains the original bytes of the division error IRQ handler
struct idtr_t idtr;                   //holds base address and limit value of the IDT

int counter=0;
__asm__(
    ".text;"
    ".global asm_hook;"
"asm_hook:;"
    "incl counter;"
    "movq (bp_handler), %rax;"
    "ret;");
extern void asm_hook(void);


__asm__(
    ".text;"
    ".global stub;"
"stub:;"
    "push %rax;"    //bp_handler    
    "push %rbx;"    //new cr3, &asm_hook
    "push %rdx;"    //old cr3
    "mov %cr3, %rdx;"
    "mov .CR3(%rip), %rbx;"
    "mov %rbx, %cr3;"
    "mov $asm_hook, %rbx;"
    "call *%rbx;"
    "mov %rdx, %cr3;"
    "pop %rdx;"
    "pop %rbx;"
    "xchg %rax, (%rsp);"
    "ret;"
".CR3:;"
    //will be filled with a valid value of cr3 during module initialization
    ".quad 0xdeadbeefdeadbeef;");
extern void stub(void);

static int __init
idt_init(void) {
    READ_IDT(idtr)
    printk("[*]  idtr dump\n"
           "[**] address:\t0x%px\n"
           "[**] lim val:\t0x%x\n"
           "[*]  end dump\n\n",
           idtr.addr, idtr.lim_val);
    idte=(idtr.addr);

    zd_handler=0
        | ((long)((idte+ZD_INT)->offset_0_15))
        | ((long)((idte+ZD_INT)->offset_16_31)<<16)
        | ((long)((idte+ZD_INT)->offset_32_63)<<32);
    printk("[*]  idt entry %d:\n"
           "[**] addr:\t0x%px\n"
           "[**] segment:\t0x%x\n"
           "[**] ist:\t%d\n"
           "[**] type:\t%d\n"
           "[**] dpl:\t%d\n"
           "[**] p:\t\t%d\n"
           "[*]  end dump\n\n",
           ZD_INT, (void *)zd_handler, (idte+ZD_INT)->segment_selector, 
           (idte+ZD_INT)->ist, (idte+ZD_INT)->type, (idte+ZD_INT)->dpl, (idte+ZD_INT)->p);
    if(!(idte+ZD_INT)->p) {
        printk("[*] fatal: handler segment not present\n");
        return ENOSYS; }

    bp_handler=0
        | ((long)((idte+BP_INT)->offset_0_15))
        | ((long)((idte+BP_INT)->offset_16_31)<<16)
        | ((long)((idte+BP_INT)->offset_32_63)<<32);
    printk("[*]  breakpoint handler:\t0x%lx\n\n", bp_handler);

    
    unsigned long cr3;
    __asm__ __volatile__("mov %%cr3, %0":"=r"(cr3)::"memory");
    printk("[*] cr3:\t0x%lx\n\n", cr3);

    memcpy(orig_bytes, (void *)zd_handler, STUB_SIZE);
    DISABLE_RW_PROTECTION
    __asm__ __volatile__("cli":::"memory");
    memcpy((void *)zd_handler, &stub, STUB_SIZE);
    *(unsigned long *)(zd_handler+STUB_SIZE-8)=cr3; //fills the .CR3 data section of stub with a value of cr3 guaranteed to have the code asm_hook paged in
    __asm__ __volatile__("sti":::"memory");
    ENABLE_RW_PROTECTION

    return 0; }

static void __exit
idt_fini(void) {
    printk("[*] counter: %d\n\n", counter);

    DISABLE_RW_PROTECTION
    __asm__ __volatile__("cli":::"memory");
    memcpy((void *)zd_handler, orig_bytes, STUB_SIZE);
    __asm__ __volatile__("sti":::"memory");
    ENABLE_RW_PROTECTION }

module_init(idt_init);
module_exit(idt_fini);

utilities.h 只包含一些相关的 IDT 宏和 structs,例如:

#define DISABLE_RW_PROTECTION         \
__asm__ __volatile__(                 \
    "mov %%cr0, %%rax;"               \
    "and [=11=]xfffffffffffeffff, %%rax;" \
    "mov %%rax, %%cr0;"               \
    :::"rax");              

#define ENABLE_RW_PROTECTION          \
__asm__ __volatile__(                 \
    "mov %%cr0, %%rax;"               \
    "or [=11=]x10000, %%rax;"             \
    "mov %%rax, %%cr0;"               \
    :::"rax");

struct idte_t {
    unsigned short offset_0_15;
    unsigned short segment_selector;
    unsigned char ist;              //interrupt stack table
    unsigned char type:4;
    unsigned char zero_12:1;
    unsigned char dpl:2;            //descriptor privilege level
    unsigned char p:1;              //present flag
    unsigned short offset_16_31;
    unsigned int offset_32_63;
    unsigned int rsv; }
    __attribute__((packed));

struct idtr_t {
    unsigned short lim_val;
    struct idte_t *addr; }
    __attribute__((packed));

#define READ_IDT(dst)   \
__asm__ __volatile__(   \
    "cli;"              \
    "sidt %0;"          \
    "sti;"              \
    :: "m"(dst)         \
    : "memory");

#define WRITE_IDT(src)  \
__asm__ __volatile__(   \
    "cli;"              \
    "lidt %0;"          \
    "sti;"              \
    :: "m"(src)         \
    : "memory");

移除模块后,dmesg 将显示调用除法错误处理程序的次数,表示成功。

*显然问题不在于我的代码,而在于 VirtualBox。在 VirtualBox 调试器中玩耍时,我意识到,一旦进入 IDT/IRQ 处理程序,试图访问甚至内核内存的某些区域都会标记一个 VERR_PAGE_TABLE_NOT_PRESENT 错误,所以看起来 VirtualBox 的实现中的某些东西必须定期交换out 内核内存区域。这对我来说似乎很奇怪,但不幸的是,据我所知,VirtualBox 没有太多文档;如果有人对这里发生的事情有任何了解,我很想听听。

无论如何,我切换到 qemu,内核模块在那里完美地工作。为了 posterity,为了确认它的工作,对模块代码进行以下修改(我更改了 linux 一个,特别是):

int counter=0;
__asm__(
    ".text;"
    ".global asm_hook;"
"asm_hook:;"
    "incl counter;"
    "jmp *(idte_offset);");

...

static void __exit
idt_fini(void) {
    printk("[*] counter:\t%d\n\n", counter);
...

加载内核模块后,运行 多次执行除零程序,然后卸载模块并检查 dmesg 以确认其是否按预期工作。

因此,总而言之,问题不在于代码,而在于 VirtualBox 本身;尽管如此,还是要感谢所有试图提供帮助的人。*