regexp_replace 在 Pyspark 数据框中

regexp_replace in Pyspark dataframe

我在 Pyspark 数据帧上执行 运行 regexp_replace 命令,之后所有数据的数据类型都更改为 String.Why 是这样吗?

下面是我在使用regex_replace

之前的table
root
 |-- account_id: long (nullable = true)
 |-- credit_card_limit: long (nullable = true)
 |-- credit_card_number: long (nullable = true)
 |-- first_name: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- phone_number: long (nullable = true)
 |-- amount: long (nullable = true)
 |-- date: string (nullable = true)
 |-- shop: string (nullable = true)
 |-- transaction_code: string (nullable = true)

应用后的架构 regexp_replace

root
 |-- date_type: date (nullable = true)
 |-- c_phone_number: string (nullable = true)
 |-- c_account_id: string (nullable = true)
 |-- c_credit_card_limit: string (nullable = true)
 |-- c_credit_card_number: string (nullable = true)
 |-- c_amount: string (nullable = true)
 |-- c_full_name: string (nullable = true)
 |-- c_transaction_code: string (nullable = true)
 |-- c_shop: string (nullable = true)

我使用的代码:

df=df.withColumn('c_phone_number',regexp_replace("phone_number","[^0-9]","")).drop('phone_number')
df=df.withColumn('c_account_id',regexp_replace("account_id","[^0-9]","")).drop('account_id')
df=df.withColumn('c_credit_card_limit',regexp_replace("credit_card_limit","[^0-9]","")).drop('credit_card_limit')
df=df.withColumn('c_credit_card_number',regexp_replace("credit_card_number","[^0-9]","")).drop('credit_card_number')
df=df.withColumn('c_amount',regexp_replace("amount","[^0-9 ]","")).drop('amount')
df=df.withColumn('c_full_name',regexp_replace("full_name","[^a-zA-Z ]","")).drop('full_name')
df=df.withColumn('c_transaction_code',regexp_replace("transaction_code","[^a-zA-Z]","")).drop('transaction_code')
df=df.withColumn('c_shop',regexp_replace("shop","[^a-zA-Z ]","")).drop('shop')

为什么会这样?有没有办法将其转换为其原始数据类型,或者我应该再次使用转换?

您可能想查看 spark git 中 regexp_replace-

的代码
override def nullSafeEval(s: Any, p: Any, r: Any): Any = {
    if (!p.equals(lastRegex)) {
      // regex value changed
      lastRegex = p.asInstanceOf[UTF8String].clone()
      pattern = Pattern.compile(lastRegex.toString)
    }
    if (!r.equals(lastReplacementInUTF8)) {
      // replacement string changed
      lastReplacementInUTF8 = r.asInstanceOf[UTF8String].clone()
      lastReplacement = lastReplacementInUTF8.toString
    }
    val m = pattern.matcher(s.toString())
    result.delete(0, result.length())

    while (m.find) {
      m.appendReplacement(result, lastReplacement)
    }
    m.appendTail(result)

    UTF8String.fromString(result.toString)
  }
  1. 上面的代码将表达式接受为 Any,然后对其调用 toString()
  2. 最后在toString
  3. 中再次转换结果
UTF8String.fromString(result.toString)

ref - spark-git