我如何将来自 BORIS 的状态数据与 TraMineR 一起使用?

How do I use state data from BORIS with TraMineR?

我正在努力弄清楚如何将 BORIS 输出转换为我可以使用 TraMineR 分析的一种状态序列分析格式。

BORIS 输出基本上是这样的表格:

                File    Time     Behavior Status
1  K8121319_feed3_01   0.000     Approach  START
2  K8121319_feed3_01 393.225     Approach   STOP
3  K8121319_feed3_01 393.226 Out-of-Frame  START
4  K8121319_feed3_01 426.003 Out-of-Frame   STOP
5  K8121319_feed3_01 442.006     Approach  START
6  K8121319_feed3_01 465.755     Approach   STOP
7  K8121319_feed3_01 465.756        Avoid  START
8  K8121319_feed3_01 513.255        Avoid   STOP
9  K8121319_feed3_01 513.256      Explore  START
10 K8121319_feed3_01 746.577      Explore   STOP

似乎可以使用 dplyr 转换为 SPELL 序列格式,但我不知道如何操作。有人一起用过这两个软件吗?

SPELL 格式如下所示:

                File Behavior     Start     Stop
1  K8121319_feed3_01 Approach      0.000    393.225
2  K8121319_feed3_01 OOF          393.226   426.003
3  K8121319_feed3_01 Approach     426.006   465.755
4  K8121319_feed3_01 Avoid        465.756   513.255
5  K8121319_feed3_01 Explore      513.256   746.577

我一直在尝试使用 dplyr::spread 来做到这一点。

编辑:这里是 dput(data1[1:20,])

的结果
structure(list(File = c("K8121319_feed3_01", "K8121319_feed3_01", 
"K8121319_feed3_01", "K8121319_feed3_01", "K8121319_feed3_01", 
"K8121319_feed3_01", "K8121319_feed3_01", "K8121319_feed3_01", 
"K8121319_feed3_01", "K8121319_feed3_01", "K8121319_feed3_02", 
"K8121319_feed3_02", "K8121319_feed3_02", "K8121319_feed3_02", 
"K8121319_feed3_02", "K8121319_feed3_02", "K8121319_feed3_02", 
"K8121319_feed3_02", "K8121319_feed3_02", "K8121319_feed3_02"
), Time = c(0, 393.225, 393.226, 426.003, 442.006, 465.755, 465.756, 
513.255, 513.256, 746.577, 0, 29.85, 29.851, 66.6, 66.601, 292.646, 
292.647, 362.208, 362.209, 442.456), Behavior = c("Approach", 
"Approach", "Out-of-Frame", "Out-of-Frame", "Approach", "Approach", 
"Avoid", "Avoid", "Explore", "Explore", "Approach", "Approach", 
"Avoid", "Avoid", "Approach", "Approach", "Avoid", "Avoid", "Approach", 
"Approach"), Status = c("START", "STOP", "START", "STOP", "START", 
"STOP", "START", "STOP", "START", "STOP", "START", "STOP", "START", 
"STOP", "START", "STOP", "START", "STOP", "START", "STOP")), row.names = c(NA, 
20L), class = "data.frame")

编辑:具有重复状态的部分 df 的 dput

dput(data1[360:370,])

structure(list(File = c("K8121819_feed3_13", "K8121819_feed3_13", 
"K8121819_feed3_13", "K8121819_feed3_13", "K8121819_feed3_13", 
"K8121819_feed3_14", "K8121819_feed3_14", "K8121819_feed3_14", 
"K8121819_feed3_14", "K8121819_feed3_14", "K8121819_feed3_14"
), Time = c(700.311, 700.312, 720.311, 742.851, 754.339, 0, 32.124, 
32.125, 47.14, 47.141, 84.671), Behavior = c("Approach", "Avoid", 
"Avoid", "Avoid", "Avoid", "Avoid", "Avoid", "Explore", "Explore", 
"Approach", "Approach"), Status = c("STOP", "START", "STOP", 
"START", "STOP", "START", "STOP", "START", "STOP", "START", "STOP"
)), row.names = 360:370, class = "data.frame")

我质疑你关于 SPELL 格式可用于连续数据的说法,因为向 seqdef 提供双精度数会导致开始和结束列必须为整数的错误。

希望这能让你入门:

编辑:现在可能修复重复的行为状态:

library(TraMineR)
library(tidyverse)
library(data.table)
data.long <- data1 %>% 
  mutate(id = rleid(Behavior),
         Behavior = str_replace_all(Behavior,pattern = "-", replacement = "")) %>%
  group_by(File,id) %>% 
  dplyr::filter(Time == min(Time) | Time == max(Time)) %>%
  pivot_wider(id_cols = c("File","Behavior", "id"),
              names_from = "Status",
              values_from = "Time") %>%
  mutate(START = 1L+as.integer(floor(START)),
         STOP = 1L+as.integer(floor(STOP))) %>%
  as.data.frame()

data.long
#                File   Behavior id START STOP
#1  K8121319_feed3_01   Approach  1     1  394
#2  K8121319_feed3_01 OutofFrame  2   394  427
#3  K8121319_feed3_01   Approach  3   443  466
#4  K8121319_feed3_01      Avoid  4   466  514
#5  K8121319_feed3_01    Explore  5   514  747
#6  K8121319_feed3_02   Approach  6     1   30
#7  K8121319_feed3_02      Avoid  7    30   67
#8  K8121319_feed3_02   Approach  8    67  293
#9  K8121319_feed3_02      Avoid  9   293  363
#10 K8121319_feed3_02   Approach 10   363  443

我删除了 -,因为它导致了 seqstatl 的问题,我添加了 1,因为显然包作者认为 0 是不允许的。我使用了 data.table 包中的 rleid 因为它节省了很多尝试使用基本 R 的 rle.

的输入

现在我们可以使用 seqdef:

data.SPELL <- seqdef(data = data.long,
                     var = c("File", "START", "STOP", "Behavior"),
                     informat = "SPELL",
                     labels = seqstatl(data.long$Behavior),
                     states = seq_along(seqstatl(data.long$Behavior)),
                     process = FALSE)
data.SPELL
#K8121319_feed3_01 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3
#K8121319_feed3_02 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1