为什么在没有在流源中获得任何新偏移量的情况下触发新批次?

Why a new batch is triggered without getting any new offsets in streaming source?

我有多个 spark 结构化流作业,我看到的通常行为是只有当 Kafka 中有任何新的偏移量时才会触发新的批处理,用作创建流查询的源。

但是当我 运行 this 示例使用 mapGroupsWithState 演示任意有状态操作时,我看到即使流源中没有新数据也会触发一个新批处理.为什么会这样,是否可以避免?

Update-1 我修改了上面的示例代码并删除了 updating/removing 之类的状态相关操作。函数只是输出零。但是仍然每 10 秒触发一次批处理,netcat 服务器上没有任何新数据。

import java.sql.Timestamp

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming._

object Stateful {

  def main(args: Array[String]): Unit = {

    val host = "localhost"
    val port = "9999"

    val spark = SparkSession
      .builder
      .appName("StructuredSessionization")
      .master("local[2]")
      .getOrCreate()

    import spark.implicits._

    // Create DataFrame representing the stream of input lines from connection to host:port
    val lines = spark.readStream
      .format("socket")
      .option("host", host)
      .option("port", port)
      .option("includeTimestamp", true)
      .load()

    // Split the lines into words, treat words as sessionId of events
    val events = lines
      .as[(String, Timestamp)]
      .flatMap { case (line, timestamp) =>
        line.split(" ").map(word => Event(sessionId = word, timestamp))
      }

    val sessionUpdates = events
      .groupByKey(event => event.sessionId)
      .mapGroupsWithState[SessionInfo, Int](GroupStateTimeout.ProcessingTimeTimeout) {

        case (sessionId: String, events: Iterator[Event], state: GroupState[SessionInfo]) =>
          0
      }

    val query = sessionUpdates
      .writeStream
      .outputMode("update")
      .trigger(Trigger.ProcessingTime("10 seconds"))
      .format("console")
      .start()

    query.awaitTermination()
  }
}

case class Event(sessionId: String, timestamp: Timestamp)

case class SessionInfo(
                        numEvents: Int,
                        startTimestampMs: Long,
                        endTimestampMs: Long)

出现空批次的原因是在 mapGroupsWithState 调用中使用了超时。

根据《Learning Spark 2.0》这本书说:

"The next micro-batch will call the function on this timed-out key even if there is not data for that key in that micro.batch. [...] Since the timeouts are processed during the micro-batches, the timing of their execution is imprecise and depends heavily on the trigger interval [...]."

由于您已将超时设置为 GroupStateTimeout.ProcessingTimeTimeout,因此它与您的查询触发时间一致,即 10 秒。另一种方法是根据事件时间设置超时(即 GroupStateTimeout.EventTimeTimeout)。

GroupState 上的 ScalaDocs 提供了更多详细信息:

When the timeout occurs for a group, the function is called for that group with no values, and GroupState.hasTimedOut() set to true.