如何向 python 中的描述符或属性添加方法
how to add methods to descriptors or properties in python
我正在尝试编写一个可以轻松扩展的模拟 class。为此,我想使用类似于 属性 的东西,但它也提供了一个 update
方法,可以针对不同的用例以不同的方式实现:
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
"""here the quantity should be updated using also values from
MySimulation, e.g. adding `MySimulation.increment`, but I don't
know how to link to the parent simulation."""
class MySimulation(object):
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
"""this one does not work because self.density returns value
which is a numpy array in the example and thus we cannot access
the update method"""
self.density.update(self)
默认模拟可以这样使用:
sim = MySimulation(np.arange(5))
# we can get the values like this
print(sim.density)
> [0, 1, 2, 3, 4]
# we can call update and all quantities should update
sim.update() # <- this one is not possible
我想以这样的方式编写它,以便可以以任何用户定义的方式扩展模拟,例如添加另一个以不同方式更新的数量:
class Temperature(Quantity):
def update(self, parent):
"here we define how to update a temperature"
class MySimulation2(MySimulation):
"an improved simulation that also evolves temperature"
temperature = Temperature()
def __init__(self, density_value, temperature_value):
super().__init__(density_value)
self.temperature = temperature_value
def update(self):
self.density.update(self)
self.temperature.update(self)
这是否可能,或者是否有其他方法可以实现类似的行为?我已经看到 this question,这可能会有所帮助,但答案似乎很不雅致 - 有适合我的案例的面向对象的好方法吗?
Is that possible somehow or is there another way to achieve a similar behavior?
有一种方法可以实现类似的行为。
第 1 步:在 instance
/MySimulation
上设置标志。
第 2 步:检查标志和 return self
在 Quantity.__get__
中是否设置了标志。
天真的实现
4 行更改。
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
if hasattr(instance, '_update_context'): # 1
return self # 2
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
self.value += parent.increment # Example update using value from parent
class MySimulation(object):
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
setattr(self, '_update_context', None) # 3
self.density.update(self)
delattr(self, '_update_context') # 4
请注意,这对 MySimulation
及其子类来说非常具有侵入性。
缓解这种情况的一种方法是为子类定义一个 _update
方法来覆盖:
def update(self):
setattr(self, '_update_context', None) # 3
self._update()
delattr(self, '_update_context') # 4
def _update(self):
self.density.update(self)
更强大的实施
使用元类,我们可以对原始代码进行 3 行更改。
class UpdateHostMeta(type):
UPDATE_CONTEXT_KEY = '_update_context'
def __init__(cls, name, bases, attrs):
super().__init__(name, bases, attrs)
__class__.patch_update(cls)
@staticmethod
def patch_update(update_host_class):
_update = update_host_class.update
def update(self, *args, **kwargs):
try:
setattr(self, __class__.UPDATE_CONTEXT_KEY, None)
_update(self, *args, **kwargs)
finally:
delattr(self, __class__.UPDATE_CONTEXT_KEY)
update_host_class.update = update
@staticmethod
def is_in_update_context(update_host):
return hasattr(update_host, __class__.UPDATE_CONTEXT_KEY)
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
if UpdateHostMeta.is_in_update_context(instance): # 1
return self # 2
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
self.value += parent.increment # Example update using value from parent
class MySimulation(object, metaclass=UpdateHostMeta): # 3
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
self.density.update(self)
鉴于不同的用例描述符允许(可能的调用绑定 https://docs.python.org/3/reference/datamodel.html?highlight=descriptor%20protocol#invoking-descriptors),因此更难理解和维护,
如果不需要描述符协议,我建议使用 property
方法。
如果侧重于保持价值而不是提供功能,您也可以考虑 dataclasses
模块。
我希望以下内容能或多或少正确地解释您的意图。
import numpy as np
LEN = 5
AS_PROPERTY = True # TODO remove this line and unwanted ``Quantity`` implementation
if AS_PROPERTY:
class Quantity:
def __init__(self, value=None):
self._val = value
def getx(self):
return self._val
def setx(self, value):
self._val = value
def __repr__(self):
return f"{self._val}"
value = property(getx, setx)
else:
class Quantity: # descriptor, questionable here
def __init__(self, value=None):
self._val = value
def __get__(self, instance, owner):
return self._val
def __set__(self, instance, value):
self._val = value
def __repr__(self):
return f"{self._val}"
class Density(Quantity):
def update(self, owner):
idx = owner.time % len(self._val) # simulation time determines index for change
self._val[idx] += 0.01
class Temperature(Quantity):
def update(self, owner):
idx = owner.time % len(self._val)
self._val[idx] += 1.0
class MySimulation: # of density
time_increment = 1
def __init__(self, value):
self.time = 0
self.density = Density(value)
def __repr__(self):
return f"{self.density}"
def time_step(self):
self.time += MySimulation.time_increment
def update(self):
self.density.update(self)
class MySimulation2(MySimulation): # of density and temperature
def __init__(self, density_value, temperature_value):
super().__init__(density_value)
self.temperature = Temperature(temperature_value)
def update(self):
super().update()
self.temperature.update(self)
if __name__ == '__main__':
sim = MySimulation(np.arange(5.))
sim.update() # => [0.01, 1., 2., 3., 4.]
print(f"sim: {sim}")
sim2 = MySimulation2(np.linspace(.1, .5, LEN), np.linspace(10., 50., LEN))
print(f"sim2:")
for _ in range(2 * LEN + 1):
print(f"{sim2.time:2}| D={sim2}, T={sim2.temperature}")
sim2.update()
sim2.time_step()
我正在尝试编写一个可以轻松扩展的模拟 class。为此,我想使用类似于 属性 的东西,但它也提供了一个 update
方法,可以针对不同的用例以不同的方式实现:
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
"""here the quantity should be updated using also values from
MySimulation, e.g. adding `MySimulation.increment`, but I don't
know how to link to the parent simulation."""
class MySimulation(object):
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
"""this one does not work because self.density returns value
which is a numpy array in the example and thus we cannot access
the update method"""
self.density.update(self)
默认模拟可以这样使用:
sim = MySimulation(np.arange(5))
# we can get the values like this
print(sim.density)
> [0, 1, 2, 3, 4]
# we can call update and all quantities should update
sim.update() # <- this one is not possible
我想以这样的方式编写它,以便可以以任何用户定义的方式扩展模拟,例如添加另一个以不同方式更新的数量:
class Temperature(Quantity):
def update(self, parent):
"here we define how to update a temperature"
class MySimulation2(MySimulation):
"an improved simulation that also evolves temperature"
temperature = Temperature()
def __init__(self, density_value, temperature_value):
super().__init__(density_value)
self.temperature = temperature_value
def update(self):
self.density.update(self)
self.temperature.update(self)
这是否可能,或者是否有其他方法可以实现类似的行为?我已经看到 this question,这可能会有所帮助,但答案似乎很不雅致 - 有适合我的案例的面向对象的好方法吗?
Is that possible somehow or is there another way to achieve a similar behavior?
有一种方法可以实现类似的行为。
第 1 步:在 instance
/MySimulation
上设置标志。
第 2 步:检查标志和 return self
在 Quantity.__get__
中是否设置了标志。
天真的实现
4 行更改。
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
if hasattr(instance, '_update_context'): # 1
return self # 2
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
self.value += parent.increment # Example update using value from parent
class MySimulation(object):
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
setattr(self, '_update_context', None) # 3
self.density.update(self)
delattr(self, '_update_context') # 4
请注意,这对 MySimulation
及其子类来说非常具有侵入性。
缓解这种情况的一种方法是为子类定义一个 _update
方法来覆盖:
def update(self):
setattr(self, '_update_context', None) # 3
self._update()
delattr(self, '_update_context') # 4
def _update(self):
self.density.update(self)
更强大的实施
使用元类,我们可以对原始代码进行 3 行更改。
class UpdateHostMeta(type):
UPDATE_CONTEXT_KEY = '_update_context'
def __init__(cls, name, bases, attrs):
super().__init__(name, bases, attrs)
__class__.patch_update(cls)
@staticmethod
def patch_update(update_host_class):
_update = update_host_class.update
def update(self, *args, **kwargs):
try:
setattr(self, __class__.UPDATE_CONTEXT_KEY, None)
_update(self, *args, **kwargs)
finally:
delattr(self, __class__.UPDATE_CONTEXT_KEY)
update_host_class.update = update
@staticmethod
def is_in_update_context(update_host):
return hasattr(update_host, __class__.UPDATE_CONTEXT_KEY)
class Quantity(object):
def __init__(self, initval=None):
self.value = initval
def __get__(self, instance, owner):
if UpdateHostMeta.is_in_update_context(instance): # 1
return self # 2
return self.value
def __set__(self, instance, value):
self.value = value
def update(self, parent):
self.value += parent.increment # Example update using value from parent
class MySimulation(object, metaclass=UpdateHostMeta): # 3
"this default simulation has only density"
density = Quantity()
increment = 1
def __init__(self, value):
self.density = value
def update(self):
self.density.update(self)
鉴于不同的用例描述符允许(可能的调用绑定 https://docs.python.org/3/reference/datamodel.html?highlight=descriptor%20protocol#invoking-descriptors),因此更难理解和维护,
如果不需要描述符协议,我建议使用 property
方法。
如果侧重于保持价值而不是提供功能,您也可以考虑 dataclasses
模块。
我希望以下内容能或多或少正确地解释您的意图。
import numpy as np
LEN = 5
AS_PROPERTY = True # TODO remove this line and unwanted ``Quantity`` implementation
if AS_PROPERTY:
class Quantity:
def __init__(self, value=None):
self._val = value
def getx(self):
return self._val
def setx(self, value):
self._val = value
def __repr__(self):
return f"{self._val}"
value = property(getx, setx)
else:
class Quantity: # descriptor, questionable here
def __init__(self, value=None):
self._val = value
def __get__(self, instance, owner):
return self._val
def __set__(self, instance, value):
self._val = value
def __repr__(self):
return f"{self._val}"
class Density(Quantity):
def update(self, owner):
idx = owner.time % len(self._val) # simulation time determines index for change
self._val[idx] += 0.01
class Temperature(Quantity):
def update(self, owner):
idx = owner.time % len(self._val)
self._val[idx] += 1.0
class MySimulation: # of density
time_increment = 1
def __init__(self, value):
self.time = 0
self.density = Density(value)
def __repr__(self):
return f"{self.density}"
def time_step(self):
self.time += MySimulation.time_increment
def update(self):
self.density.update(self)
class MySimulation2(MySimulation): # of density and temperature
def __init__(self, density_value, temperature_value):
super().__init__(density_value)
self.temperature = Temperature(temperature_value)
def update(self):
super().update()
self.temperature.update(self)
if __name__ == '__main__':
sim = MySimulation(np.arange(5.))
sim.update() # => [0.01, 1., 2., 3., 4.]
print(f"sim: {sim}")
sim2 = MySimulation2(np.linspace(.1, .5, LEN), np.linspace(10., 50., LEN))
print(f"sim2:")
for _ in range(2 * LEN + 1):
print(f"{sim2.time:2}| D={sim2}, T={sim2.temperature}")
sim2.update()
sim2.time_step()