对于带有 pandas 数据帧的 f 字符串循环
For loop with f-string with pandas dataframe
我需要尝试创建两个循环(必须分开):
每个水果的循环 1):
- 如果该水果为 True,则保留行
- 删除具有重复日期的行(可以删除任何一行)
- 将上述结果保存为每个水果的数据框
LOOP 2) 对于创建的每个数据框,图表日期在 fruit_score:
concat apple_score banana_score date apple banana
1 apple 0.400 0.400 2010-02-12 True False
2 banana 0.530 0.300 2010-01-12 False True
3 kiwi 0.532 0.200 2010-03-03 False False
4 bana 0.634 0.100 2010-03-03 False True
我试过了:
fruits = ['apple', 'banana', 'orange']
for fruit in fruits:
selected_rows = df[df[ fruit ] == True ]
df_f'{fruit}' = selected_rows.drop_duplicates(subset='date')
for fruit in fruits:
df_f'{fruit}'.plot(x="date", y=(f'{fruit}_score'), kind="line")
你应该按照@youyoun 建议的方式做一些事情:
dfs = {}
fruits = ['apple', 'banana']
for fruit in fruits:
selected_rows = df[df[ fruit ] == True ].drop_duplicates(subset='date')
dfs[f'df_{fruit}'] = selected_rows
for a,v in dfs.items():
print(a)
print(v)
输出:
df_apple
concat apple_score banana_score date apple banana
1 apple 0.4 0.4 2010-02-12 True False
df_banana
concat apple_score banana_score date apple banana
2 banana 0.530 0.3 2010-01-12 False True
4 bana 0.634 0.1 2010-03-03 False True
我需要尝试创建两个循环(必须分开):
每个水果的循环 1):
- 如果该水果为 True,则保留行
- 删除具有重复日期的行(可以删除任何一行)
- 将上述结果保存为每个水果的数据框
LOOP 2) 对于创建的每个数据框,图表日期在 fruit_score:
concat apple_score banana_score date apple banana
1 apple 0.400 0.400 2010-02-12 True False
2 banana 0.530 0.300 2010-01-12 False True
3 kiwi 0.532 0.200 2010-03-03 False False
4 bana 0.634 0.100 2010-03-03 False True
我试过了:
fruits = ['apple', 'banana', 'orange']
for fruit in fruits:
selected_rows = df[df[ fruit ] == True ]
df_f'{fruit}' = selected_rows.drop_duplicates(subset='date')
for fruit in fruits:
df_f'{fruit}'.plot(x="date", y=(f'{fruit}_score'), kind="line")
你应该按照@youyoun 建议的方式做一些事情:
dfs = {}
fruits = ['apple', 'banana']
for fruit in fruits:
selected_rows = df[df[ fruit ] == True ].drop_duplicates(subset='date')
dfs[f'df_{fruit}'] = selected_rows
for a,v in dfs.items():
print(a)
print(v)
输出:
df_apple
concat apple_score banana_score date apple banana
1 apple 0.4 0.4 2010-02-12 True False
df_banana
concat apple_score banana_score date apple banana
2 banana 0.530 0.3 2010-01-12 False True
4 bana 0.634 0.1 2010-03-03 False True