分类图像的准确性没有增加
accuracy is not increasing in classification images
我尝试使用 dropout 用贝叶斯 CNN 实现图像分类。
我定义了两个 类:
- 训练阶段有 dropout
- 无辍学(不辍学?请确认)
当我启动程序时,我重新设置 train/test 准确度保持稳定,不会增加。没看出来是什么问题
不知道是因为卷积层和池化层的参数还是什么?有什么想法吗
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 1024)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Lenet with MCDO
class Net_MCDO(nn.Module):
def __init__(self):
super(Net_MCDO, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 192, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.dropout = nn.Dropout(p=0.3)
def forward(self, x):
x = self.pool(self.dropout(self.conv1(x)))
x = self.pool(self.dropout(self.conv2(x)))
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = F.softmax(self.fc3(self.dropout(x)),dim=1)
return x
net=Net()
mcdo=Net_MCDO()
CE = nn.CrossEntropyLoss()
learning_rate=0.001
optimizer=optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
epoch_num = 30
train_accuracies=np.zeros(epoch_num)
test_accuracies=np.zeros(epoch_num)
for epoch in range(epoch_num):
average_loss = 0.0
total=0
success=0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = mcdo(inputs)
loss=CE(outputs, labels)
loss.backward()
optimizer.step()
average_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
success += (predicted==labels.data).sum()
train_accuracy = 100.0*success/total
succes=0
total=0
for (inputs, labels) in testloader:
inputs, labels = Variable(inputs), Variable(labels)
outputs = net(inputs)
_,predicted = torch.max(outputs.data, 1)
total += labels.size(0)
success += (predicted==labels.data).sum()
test_accuracy = 100.0*success/total
print(u"epoch{}, average_loss{}, train_accuracy{},
test_accuracy{}".format(
epoch,
average_loss/n_batches,
train_accuracy,
100*success/total
))
#save
train_accuracies[epoch] = train_accuracy
test_accuracies[epoch] = 100.0*success/total
plt.plot(np.arange(1, epoch_num+1), train_accuracies)
plt.plot(np.arange(1, epoch_num+1), test_accuracies)
plt.show()
是的,你是对的:测试时不要使用 dropout(也不是 batchnorm)。但是您不必为此创建不同的模型。您可以在训练模式和测试模式之间进行选择。只需创建一个模型,例如 'net':
# when training
outputs = net.train()(inputs)
# when testing:
outputs = net.eval()(inputs)
但是无论如何你都不应该真的使用 dropout 和 conv-layers。就在最后的致密层上。这可能是它没有改善的原因。
而且您的架构很小。你的图片有多大?如果它们超过 32x32,您可以尝试再添加一层。您也可以尝试从大约 0.001 的学习率开始,然后每次在某些时期的准确性没有提高时将其除以二。希望这会对你有所帮助:)
编辑
我刚刚看到您在第二个模型(带 dropout)上缺少 relu 激活,这应该会导致问题。
Pytorch 将 Softmax
合并到 CrossEntroplyLoss
中以获得数值稳定性(以及更好的训练)。所以你应该删除模型的 softmax 层。 (查看此处的文档:https://pytorch.org/docs/stable/nn.html#crossentropyloss)。在模型中保留 Sofmax
层会导致训练速度变慢,指标可能更差,这是因为您 压缩 梯度两次,因此权重更新的意义不大.
将您的代码更改为:
class Net_MCDO(nn.Module):
def __init__(self):
super(Net_MCDO, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 192, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.dropout = nn.Dropout(p=0.3)
def forward(self, x):
x = self.pool(F.relu(self.dropout(self.conv1(x)))) # recommended to add the relu
x = self.pool(F.relu(self.dropout(self.conv2(x)))) # recommended to add the relu
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = self.fc3(self.dropout(x)) # no activation function needed for the last layer
return x
此外,我建议您在每个 conv 或线性层之后使用激活函数,例如 ReLU()
。否则你只是在执行一堆可以在一个单层中学习的线性操作。
希望对您有所帮助=)
我尝试使用 dropout 用贝叶斯 CNN 实现图像分类。
我定义了两个 类:
- 训练阶段有 dropout
- 无辍学(不辍学?请确认)
当我启动程序时,我重新设置 train/test 准确度保持稳定,不会增加。没看出来是什么问题
不知道是因为卷积层和池化层的参数还是什么?有什么想法吗
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 1024)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Lenet with MCDO
class Net_MCDO(nn.Module):
def __init__(self):
super(Net_MCDO, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 192, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.dropout = nn.Dropout(p=0.3)
def forward(self, x):
x = self.pool(self.dropout(self.conv1(x)))
x = self.pool(self.dropout(self.conv2(x)))
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = F.softmax(self.fc3(self.dropout(x)),dim=1)
return x
net=Net()
mcdo=Net_MCDO()
CE = nn.CrossEntropyLoss()
learning_rate=0.001
optimizer=optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
epoch_num = 30
train_accuracies=np.zeros(epoch_num)
test_accuracies=np.zeros(epoch_num)
for epoch in range(epoch_num):
average_loss = 0.0
total=0
success=0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = mcdo(inputs)
loss=CE(outputs, labels)
loss.backward()
optimizer.step()
average_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
success += (predicted==labels.data).sum()
train_accuracy = 100.0*success/total
succes=0
total=0
for (inputs, labels) in testloader:
inputs, labels = Variable(inputs), Variable(labels)
outputs = net(inputs)
_,predicted = torch.max(outputs.data, 1)
total += labels.size(0)
success += (predicted==labels.data).sum()
test_accuracy = 100.0*success/total
print(u"epoch{}, average_loss{}, train_accuracy{},
test_accuracy{}".format(
epoch,
average_loss/n_batches,
train_accuracy,
100*success/total
))
#save
train_accuracies[epoch] = train_accuracy
test_accuracies[epoch] = 100.0*success/total
plt.plot(np.arange(1, epoch_num+1), train_accuracies)
plt.plot(np.arange(1, epoch_num+1), test_accuracies)
plt.show()
是的,你是对的:测试时不要使用 dropout(也不是 batchnorm)。但是您不必为此创建不同的模型。您可以在训练模式和测试模式之间进行选择。只需创建一个模型,例如 'net':
# when training
outputs = net.train()(inputs)
# when testing:
outputs = net.eval()(inputs)
但是无论如何你都不应该真的使用 dropout 和 conv-layers。就在最后的致密层上。这可能是它没有改善的原因。 而且您的架构很小。你的图片有多大?如果它们超过 32x32,您可以尝试再添加一层。您也可以尝试从大约 0.001 的学习率开始,然后每次在某些时期的准确性没有提高时将其除以二。希望这会对你有所帮助:)
编辑 我刚刚看到您在第二个模型(带 dropout)上缺少 relu 激活,这应该会导致问题。
Pytorch 将 Softmax
合并到 CrossEntroplyLoss
中以获得数值稳定性(以及更好的训练)。所以你应该删除模型的 softmax 层。 (查看此处的文档:https://pytorch.org/docs/stable/nn.html#crossentropyloss)。在模型中保留 Sofmax
层会导致训练速度变慢,指标可能更差,这是因为您 压缩 梯度两次,因此权重更新的意义不大.
将您的代码更改为:
class Net_MCDO(nn.Module):
def __init__(self):
super(Net_MCDO, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 192, 5, padding=2)
self.fc1 = nn.Linear(16 * 8 * 8, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.dropout = nn.Dropout(p=0.3)
def forward(self, x):
x = self.pool(F.relu(self.dropout(self.conv1(x)))) # recommended to add the relu
x = self.pool(F.relu(self.dropout(self.conv2(x)))) # recommended to add the relu
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = self.fc3(self.dropout(x)) # no activation function needed for the last layer
return x
此外,我建议您在每个 conv 或线性层之后使用激活函数,例如 ReLU()
。否则你只是在执行一堆可以在一个单层中学习的线性操作。
希望对您有所帮助=)