如何找到一个向量与矩阵的余弦相似度

How to find cosine similarity of one vector vs matrix

我有一个形状为 (149,1001) 的 TF-IDF 矩阵。想要的是计算最后一列的余弦相似度,所有列

这是我做的

from numpy import dot
from numpy.linalg import norm
for i in range(mat.shape[1]-1):
    cos_sim = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))
    cos_sim

但是这个循环让它变慢了。那么,有什么有效的方法吗?我只想用 numpy

有一个 sklearn 函数可以计算向量之间的余弦相似度,cosine_similarity。这是一个带有示例数组的用例:

a = np.random.randint(0,10,(5,5))
print(a)
array([[5, 2, 0, 4, 1],
       [4, 2, 8, 2, 4],
       [9, 7, 4, 9, 7],
       [4, 6, 0, 1, 3],
       [1, 1, 2, 5, 0]])

from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity(a[None,:,-1] , a.T[:-1])
# array([[0.94022805, 0.91705665, 0.75592895, 0.79921221, 1.        ]])

其中 a[None,-1]a 中的最后一列,重新整形以使两个矩阵的形状相同 Mat.shape[1],这是函数的要求:

a[None,:,-1]
# array([[1, 4, 7, 3, 0]])

并且通过转置,结果将是 cosine_similarity 和所有其他列。

检查问题的解决方案:

from numpy import dot
from numpy.linalg import norm
cos_sim = []
for i in range(a.shape[1]-1):
    cos_sim.append(dot(a[:,i], a[:,-1])/(norm(a[:,i])*norm(a[:,-1])))

np.allclose(cos_sim, cosine_similarity(a[None,:,-1] , a.T[:-1]))
# True

杠杆2D向量化matrix-multiplication

这是 NumPy 在二维数据上使用 matrix-multiplication 的一个 -

p1 = mat[:,-1].dot(mat[:,:-1])
p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
out1 = p1/p2

解释: p1dot(mat[:,i], mat[:,-1]) 循环的向量化等价物。 p2 属于 (norm(mat[:,i])*norm(mat[:,-1])).

用于验证的样本运行 -

In [57]: np.random.seed(0)
    ...: mat = np.random.rand(149,1001)

In [58]: out = np.empty(mat.shape[1]-1)
    ...: for i in range(mat.shape[1]-1):
    ...:     out[i] = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))

In [59]: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
    ...: out1 = p1/p2

In [60]: np.allclose(out, out1)
Out[60]: True

计时 -

In [61]: %%timeit
    ...: out = np.empty(mat.shape[1]-1)
    ...: for i in range(mat.shape[1]-1):
    ...:     out[i] = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))
18.5 ms ± 977 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [62]: %%timeit   
    ...: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
    ...: out1 = p1/p2
939 µs ± 29.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# @yatu's soln
In [89]: a = mat

In [90]: %timeit cosine_similarity(a[None,:,-1] , a.T[:-1])
2.47 ms ± 461 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

进一步优化 normeinsum

或者,我们可以用 np.einsum 计算 p2

因此,norm(mat[:,:-1],axis=0) 可以替换为:

np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))

因此,给我们一个修改后的 p2 :

p2 = np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))*norm(mat[:,-1])

与之前相同设置的计时 -

In [82]: %%timeit
    ...: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))*norm(mat[:,-1])
    ...: out1 = p1/p2
607 µs ± 132 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

30x+ 比 loopy one 提速!