纸浆获得结果因为问题是不可行的,而问题是不可行的

Pulp obtains results as problem is infeasible, while problem is not feasible

我正在尝试用 pulp 解决分配问题。代码的基本部分如下:


set_I = range(1, numberOfPoints)
set_J = range(1, numberOfCentroids)

tau = 0.15
Q = 15

# decision variable
x_vars = LpVariable.dicts(name="x_vars", indexs=(set_I, set_J), lowBound=0, upBound=1, cat=LpInteger)

# model name
prob = LpProblem("MIP_Model", LpMinimize)

# constraints
for i in set_I:
   prob += lpSum(x_vars[i][j] for j in set_J) == 1, ""

for j in set_J:
   prob += lpSum(x_vars[i][j] for i in set_I) >= 1, ""

for j in set_J:
   prob += lpSum(x_vars[i][j] for i in set_I) <= Q*(1-tau), ""

for j in set_J:
   prob += lpSum(x_vars[i][j] for i in set_I) >= Q*(1+tau), ""

# objective
prob += lpSum(d[i, j]*x_vars[i][j] for i in set_I for j in set_J)

prob.solve()

结果是这样的:

问题模型有31行76列304个元素

Coin0008I 模型读取错误为 0

问题不可行 - 0.01秒

打印选项从正常更改为全部

不过,这个问题并不是不可行的,结果是用其他求解器得到的。

请问是不是语法错误,是这个问题造成的吗?

我在下一个link中问过类似的问题:

Infeasible solution by pulp

当我 运行 本地问题时,d 一个矩阵,20 个点和 3 个质心。这对我来说也变得不可行。查看约束条件:

_C22: x_vars_10_1 + x_vars_11_1 + x_vars_12_1 + x_vars_13_1 + x_vars_14_1
 + x_vars_15_1 + x_vars_16_1 + x_vars_17_1 + x_vars_18_1 + x_vars_19_1
 + x_vars_1_1 + x_vars_2_1 + x_vars_3_1 + x_vars_4_1 + x_vars_5_1 + x_vars_6_1
 + x_vars_7_1 + x_vars_8_1 + x_vars_9_1 <= 12.75

_C23: x_vars_10_2 + x_vars_11_2 + x_vars_12_2 + x_vars_13_2 + x_vars_14_2
 + x_vars_15_2 + x_vars_16_2 + x_vars_17_2 + x_vars_18_2 + x_vars_19_2
 + x_vars_1_2 + x_vars_2_2 + x_vars_3_2 + x_vars_4_2 + x_vars_5_2 + x_vars_6_2
 + x_vars_7_2 + x_vars_8_2 + x_vars_9_2 <= 12.75

_C24: x_vars_10_1 + x_vars_11_1 + x_vars_12_1 + x_vars_13_1 + x_vars_14_1
 + x_vars_15_1 + x_vars_16_1 + x_vars_17_1 + x_vars_18_1 + x_vars_19_1
 + x_vars_1_1 + x_vars_2_1 + x_vars_3_1 + x_vars_4_1 + x_vars_5_1 + x_vars_6_1
 + x_vars_7_1 + x_vars_8_1 + x_vars_9_1 >= 17.25

_C25: x_vars_10_2 + x_vars_11_2 + x_vars_12_2 + x_vars_13_2 + x_vars_14_2
 + x_vars_15_2 + x_vars_16_2 + x_vars_17_2 + x_vars_18_2 + x_vars_19_2
 + x_vars_1_2 + x_vars_2_2 + x_vars_3_2 + x_vars_4_2 + x_vars_5_2 + x_vars_6_2
 + x_vars_7_2 + x_vars_8_2 + x_vars_9_2 >= 17.25

你需要

x_vars_10_2 + x_vars_11_2 + x_vars_12_2 + x_vars_13_2 + x_vars_14_2
 + x_vars_15_2 + x_vars_16_2 + x_vars_17_2 + x_vars_18_2 + x_vars_19_2
 + x_vars_1_2 + x_vars_2_2 + x_vars_3_2 + x_vars_4_2 + x_vars_5_2 + x_vars_6_2
 + x_vars_7_2 + x_vars_8_2 + x_vars_9_2

同时大于17.25小于12.75。这当然不可能。