如何 json_normalize pandas 中包含空列表的列,而不丢失记录

How to json_normalize a column in pandas with empty lists, without losing records

我正在使用 pd.json_normalize 将此数据中的 "sections" 字段展平为行。它工作正常,除了 "sections" 是空列表的行。

此 ID 被完全忽略,并且在最终的展平数据框中丢失。我需要确保数据中每个唯一 ID 至少有一行(某些 ID 可能有很多行,每个唯一 ID 最多一行,每个唯一 section_idquestion_idanswer_id 因为我在数据中取消了更多字段):

     {'_id': '5f48f708fe22ca4d15fb3b55',
      'created_at': '2020-08-28T12:22:32Z',
      'sections': []}]

示例数据:

sample = [{'_id': '5f48bee4c54cf6b5e8048274',
          'created_at': '2020-08-28T08:23:00Z',
          'sections': [{'comment': '',
            'type_fail': None,
            'answers': [{'comment': 'stuff',
              'feedback': [],
              'value': 10.0,
              'answer_type': 'default',
              'question_id': '5e59599c68369c24069630fd',
              'answer_id': '5e595a7c3fbb70448b6ff935'},
             {'comment': 'stuff',
              'feedback': [],
              'value': 10.0,
              'answer_type': 'default',
              'question_id': '5e598939cedcaf5b865ef99a',
              'answer_id': '5e598939cedcaf5b865ef998'}],
            'score': 20.0,
            'passed': True,
            '_id': '5e59599c68369c24069630fe',
            'custom_fields': []},
           {'comment': '',
            'type_fail': None,
            'answers': [{'comment': '',
              'feedback': [],
              'value': None,
              'answer_type': 'not_applicable',
              'question_id': '5e59894f68369c2398eb68a8',
              'answer_id': '5eaad4e5b513aed9a3c996a5'},
             {'comment': '',
              'feedback': [],
              'value': None,
              'answer_type': 'not_applicable',
              'question_id': '5e598967cedcaf5b865efe3e',
              'answer_id': '5eaad4ece3f1e0794372f8b2'},
             {'comment': "stuff",
              'feedback': [],
              'value': 0.0,
              'answer_type': 'default',
              'question_id': '5e598976cedcaf5b865effd1',
              'answer_id': '5e598976cedcaf5b865effd3'}],
            'score': 0.0,
            'passed': True,
            '_id': '5e59894f68369c2398eb68a9',
            'custom_fields': []}]},
         {'_id': '5f48f708fe22ca4d15fb3b55',
          'created_at': '2020-08-28T12:22:32Z',
          'sections': []}]

测试:

df = pd.json_normalize(sample)
df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")

此时,我现在缺少 ID“5f48f708fe22ca4d15fb3b55”的一行,我仍然需要它。

df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")

我能否以某种方式更改它以确保每个 ID 至少得到一行?我正在处理数百万条记录,不想稍后意识到我的最终数据中缺少某些 ID。我能想到的唯一解决方案是规范化每个数据帧,然后再次将其加入原始数据帧。

这是 json_normalize 的一个已知问题。我还没有找到使用 json_normalize 执行此操作的方法。你可以尝试使用 flatten_json 这样的东西:

import flatten_json as fj

dic = (fj.flatten(d) for d in sample)
df = pd.DataFrame(dic)
print(df)

                        _id            created_at sections_0_comment  ...            sections_1__id sections_1_custom_fields sections
0  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z                     ...  5e59894f68369c2398eb68a9                       []      NaN
1  5f48f708fe22ca4d15fb3b55  2020-08-28T12:22:32Z                NaN  ...                       NaN                      NaN       []
  • 解决此问题的最佳方法是修复 dict
  • 如果sections为空list,用[{'answers': [{}]}]
  • 填充
for i, d in enumerate(sample):
    if not d['sections']:
        sample[i]['sections'] = [{'answers': [{}]}]

df = pd.json_normalize(sample)
df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")

# display(df2)
  section_comment  section_type_fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               section_answers  section_score section_passed               section__id section_custom_fields                       _id            created_at
0                                NaN                                                                                                                                                                        [{'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e59599c68369c24069630fd', 'answer_id': '5e595a7c3fbb70448b6ff935'}, {'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e598939cedcaf5b865ef99a', 'answer_id': '5e598939cedcaf5b865ef998'}]           20.0           True  5e59599c68369c24069630fe                    []  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z
1                                NaN  [{'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e59894f68369c2398eb68a8', 'answer_id': '5eaad4e5b513aed9a3c996a5'}, {'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e598967cedcaf5b865efe3e', 'answer_id': '5eaad4ece3f1e0794372f8b2'}, {'comment': 'stuff', 'feedback': [], 'value': 0.0, 'answer_type': 'default', 'question_id': '5e598976cedcaf5b865effd1', 'answer_id': '5e598976cedcaf5b865effd3'}]            0.0           True  5e59894f68369c2398eb68a9                    []  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z
2             NaN                NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          [{}]            NaN            NaN                       NaN                   NaN  5f48f708fe22ca4d15fb3b55  2020-08-28T12:22:32Z

df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")

# display(df3)
  comment feedback  value     answer_type               question_id                 answer_id                       _id            created_at               section__id section_score section_passed section_type_fail section_comment
0   stuff       []   10.0         default  5e59599c68369c24069630fd  5e595a7c3fbb70448b6ff935  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59599c68369c24069630fe            20           True               NaN                
1   stuff       []   10.0         default  5e598939cedcaf5b865ef99a  5e598939cedcaf5b865ef998  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59599c68369c24069630fe            20           True               NaN                
2               []    NaN  not_applicable  5e59894f68369c2398eb68a8  5eaad4e5b513aed9a3c996a5  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
3               []    NaN  not_applicable  5e598967cedcaf5b865efe3e  5eaad4ece3f1e0794372f8b2  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
4   stuff       []    0.0         default  5e598976cedcaf5b865effd1  5e598976cedcaf5b865effd3  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
5     NaN      NaN    NaN             NaN                       NaN                       NaN  5f48f708fe22ca4d15fb3b55  2020-08-28T12:22:32Z                       NaN           NaN            NaN               NaN             NaN