在 Python 中重现多维梯度结果

Reproducing Multidimensional Gradient Results in Python

在Octave中,我有

x = -0.8:0.2:1;
y = -0.8:0.2:1;
z = -0.8:0.8:1;

[xx,yy,zz] = meshgrid(x, y, z);

u = sin(pi .* xx) .* cos(pi .* yy) .* cos(pi .* zz);

dx = xx(1,:,1)(:);
dy = yy(:,1,1)(:);
dz = zz(1,1,:)(:);

[a, b, c] = gradient (u, dx, dy, dz);
b(1,:,1)

输出

1.18882   1.92355   1.92355   1.18882   0.00000  -1.18882  -1.92355  -1.92355  -1.18882  -0.00000

用Python,我试着复制它,

import numpy as np

xx, yy, zz = np.meshgrid(np.arange(-0.8, 1.2, 0.2),
                         np.arange(-0.8, 1.2, 0.2),
                         np.arange(-0.8, 1.2, 0.8))


u = np.sin(np.pi * xx) * np.cos(np.pi * yy) * np.cos(np.pi * zz)

dx = xx[0,:,0]
dy = yy[:,0,0]
dz = zz[0,0,:]

a,b,c = np.gradient (u, dx, dy, dz)
print (b[0,:,0])

我明白了

[-1.18882065 -0.59441032  0.59441032  1.55618643  1.92355221  1.55618643
  0.59441032 -0.59441032 -1.55618643 -1.92355221]

看起来不一样。如何让 Numpy gradient 调用与 Octave 结果相匹配?

我的Numpy版本是1.19.0,Octave是4.2.2。

我看到 问另一个 Matlab / Python 梯度问题,那个调用对我有用,我猜这是低维情况。

  • Matlab/Octave 默认使用分栏主布局
  • Numpy 默认使用行主布局

因此需要将前两个维度的坐标轴顺序倒过来:

a,b,c = np.gradient (u, dx, dy, dz, axis=[1,0,2])