使用 pandas 查找具有 Null 的 2 列之间的差异

Find difference between 2 columns with Nulls using pandas

我想找出 pandas DataFrame 中两列 int 类型的区别。我正在使用 python 2.7。列如下 -

>>> df
   INVOICED_QUANTITY  QUANTITY_SHIPPED
0                 15               NaN
1                 20               NaN
2                  7               NaN
3                  7               NaN
4                  7               NaN

现在,我想从 INVOICED_QUANTITY 中减去 QUANTITY_SHIPPED,然后执行以下操作 -

>>> df['Diff'] = df['QUANTITY_INVOICED'] - df['SHIPPED_QUANTITY']
>>> df
   QUANTITY_INVOICED  SHIPPED_QUANTITY  Diff
0                 15               NaN   NaN
1                 20               NaN   NaN
2                  7               NaN   NaN
3                  7               NaN   NaN
4                  7               NaN   NaN

如何处理 NaN?我想得到以下结果,因为我希望将 NaN 视为 0(零)-

>>> df
       QUANTITY_INVOICED  SHIPPED_QUANTITY  Diff
    0                 15               NaN   15
    1                 20               NaN   20
    2                  7               NaN   7
    3                  7               NaN   7
    4                  7               NaN   7

我不想做 df.fillna(0)。总而言之,我会尝试类似以下的方法并且它有效但没有区别 -

>>> df['Sum'] = df[['QUANTITY_INVOICED', 'SHIPPED_QUANTITY']].sum(axis=1)
>>> df
   INVOICED_QUANTITY  QUANTITY_SHIPPED  Diff  Sum
0                 15               NaN   NaN   15
1                 20               NaN   NaN   20
2                  7               NaN   NaN    7
3                  7               NaN   NaN    7
4                  7               NaN   NaN    7

我认为用 0 简单地填充 NaN 会帮助你。

df['Diff'] = df['INVOICED_QUANTITY'] - df['QUANTITY_SHIPPED'].fillna(0)

Out[153]: 
   INVOICED_QUANTITY  QUANTITY_SHIPPED  Diff
0                 15               NaN    15
1                 20               NaN    20
2                  7               NaN     7
3                  7               NaN     7
4                  7               NaN     7

您可以使用 sub 方法执行减法 - 此方法允许 NaN 值被视为指定值:

df['Diff'] = df['INVOICED_QUANTITY'].sub(df['QUANTITY_SHIPPED'], fill_value=0)

产生:

   INVOICED_QUANTITY  QUANTITY_SHIPPED  Diff
0                 15               NaN    15
1                 20               NaN    20
2                  7               NaN     7
3                  7               NaN     7
4                  7               NaN     7

另一种简洁的方法是 :填写列中的缺失值(创建列的副本)并照常减去。

这两种方法几乎相同,尽管sub效率更高一些,因为它不需要提前生成列的副本;它只是填充缺失值 "on the fly":

In [46]: %timeit df['INVOICED_QUANTITY'] - df['QUANTITY_SHIPPED'].fillna(0)
10000 loops, best of 3: 144 µs per loop

In [47]: %timeit df['INVOICED_QUANTITY'].sub(df['QUANTITY_SHIPPED'], fill_value=0)
10000 loops, best of 3: 81.7 µs per loop

@Jianxun Li 的 @Alex Riley and @Jianxun Li do not work as intended when both columns are NaN. You can slightly revise 建议的解决方案(以牺牲一些计算时间为代价)来解决这个问题。

df['Diff'] = df['INVOICED_QUANTITY'].fillna(0) - df['QUANTITY_SHIPPED'].fillna(0)

我发布了几个选项进行比较:

data = {'C1':  [1,2,np.nan,np.nan],
        'C2': [6,np.nan,4,np.nan],
       }
df = pd.DataFrame(data)

df['Dif']=df.C1-df.C2
df['Dif2']=df['C1'].sub(df['C2'], fill_value=0)
df['Dif3']=df['C1']-df['C2'].fillna(0)
df['Dif4']=df['C1'].fillna(0)-df['C2']
df['Dif5']=df['C1'].fillna(0)-df['C2'].fillna(0)

print (df)

产生

     C1    C2    Dif   Dif2   Dif3   Dif4   Dif5
0 1.000 6.000 -5.000 -5.000 -5.000 -5.000 -5.000
1 2.000   NaN    NaN  2.000  2.000    NaN  2.000
2   NaN 4.000    NaN -4.000    NaN -4.000 -4.000
3   NaN   NaN    NaN    NaN    NaN    NaN  0.000