PyTorch 阶乘函数

PyTorch Factorial Function

似乎没有用于计算阶乘的 PyTorch 函数。在 PyTorch 中有没有办法做到这一点?我希望在 Torch 中手动计算泊松分布(我知道它存在:https://pytorch.org/docs/stable/generated/torch.poisson.html)并且该公式需要分母中的阶乘。

泊松分布:https://en.wikipedia.org/wiki/Poisson_distribution

内置的 math 模块 (docs) 提供了 returns 给定积分的阶乘作为 int.

的函数
import math

x = math.factorial(5)
print(x)
print(type(x))

输出

120
<class 'int'>

我认为您可以找到 torch.jit._builtins.math.factorial BUT pytorch 以及 numpyscipyFactorial in numpy and scipy) 使用 python 的内置函数 math.factorial:

import math

import numpy as np
import scipy as sp
import torch


print(torch.jit._builtins.math.factorial is math.factorial)
print(np.math.factorial is math.factorial)
print(sp.math.factorial is math.factorial)
True
True
True

但是,相比之下,scipy除了“主流”math.factorial之外,还包含非常“特殊”的阶乘函数scipy.special.factorial。与 math 模块中的函数不同,它对数组进行操作:

from scipy import special

print(special.factorial is math.factorial)
False
# the all known factorial functions
factorials = (
    math.factorial,
    torch.jit._builtins.math.factorial,
    np.math.factorial,
    sp.math.factorial,
    special.factorial,
)

# Let's run some tests
tnsr = torch.tensor(3)

for fn in factorials:
    try:
        out = fn(tnsr)
    except Exception as err:
        print(fn.__name__, fn.__module__, ':', err)
    else:
        print(fn.__name__, fn.__module__, ':', out)
factorial math : 6
factorial math : 6
factorial math : 6
factorial math : 6
factorial scipy.special._basic : tensor(6., dtype=torch.float64)
tnsr = torch.tensor([1, 2, 3])

for fn in factorials:
    try:
        out = fn(tnsr)
    except Exception as err:
        print(fn.__name__, fn.__module__, ':', err)
    else:
        print(fn.__name__, fn.__module__, ':', out)
factorial math : only integer tensors of a single element can be converted to an index
factorial math : only integer tensors of a single element can be converted to an index
factorial math : only integer tensors of a single element can be converted to an index
factorial math : only integer tensors of a single element can be converted to an index
factorial scipy.special._basic : tensor([1., 2., 6.], dtype=torch.float64)