减少 R 中条件语句的数量?
Reducing number of conditional statements in R?
我有这么大的代码块,其中包含不同的 if 语句和针对这些 if 语句的不同 for 语句。有没有一种方法可以减少这段代码中 if 和 for 循环的数量,使其更加简洁和高效?
library(tidyverse)
occ_simulation <- function(nyears, lambda, alpha, beta){
data_matrix <- matrix(, nrow = nyears, ncol = 6)
for (z in 1:nyears){
data_matrix[z][1] <- z
}
for (yr in 1:nyears){
poisson_sim = rpois(1, lambda)
for (number_of_events in poisson_sim){
if (number_of_events == 1){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, 2] <- beta_sim
} else if (number_of_events == 2){
for (i in 2:3){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else if (number_of_events == 3){
for (i in 2:4){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else if (number_of_events == 4){
for (i in 2:5){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else{
for (i in 2:6){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
}
}
}
sorted_matrix <- cbind(data_matrix[,1],t(apply(data_matrix[,2:6],1,function(x) sort(x))))
G <- sorted_matrix %>% as.data.frame %>%
pivot_longer(-V1) %>%
ggplot(aes(x=factor(V1),y=value,color=name,group=name))+
geom_point()+
labs(color='Column',x='Time (Years)', y ='Probability')+
theme_bw()
return(G)
}
manual = occ_simulation(10, 10, 2, 20)
manual
此代码的作用是输入您想要模拟的时间范围,然后每年进行泊松模拟以计算该年发生的事件数。然后取决于那一年发生的事件的数量(最多为 5)。然后,根据发生的事件数量,它会为每个事件运行测试版模拟,这样您就有了一年中发生的 5 个“事件”的价值。然后它只是将其放入一个矩阵中,这样我们就得到了一个矩阵,其中包含年数值与已发生事件数的值。
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0.011466314 0.05644778 0.09415982 0.24654834 0.31950041
[2,] 2 0.005988383 0.05334661 0.07467286 0.10501165 0.18135706
[3,] 3 0.030178740 0.04501533 0.07642787 0.11537804 0.12156121
[4,] 4 0.033208015 0.04391486 0.10769396 0.12492813 0.19938551
[5,] 5 0.026646013 0.03085844 0.06188760 0.10742163 0.16181556
[6,] 6 0.021271089 0.03010617 0.08581937 0.11578462 0.40768207
[7,] 7 0.032381818 0.06602770 0.08423590 0.10511102 0.15810456
[8,] 8 0.030124977 0.04863202 0.08484395 0.08790361 0.09787569
[9,] 9 0.043273119 0.05148791 0.06314097 0.10162677 0.10308642
[10,] 10 0.045976676 0.06381831 0.07352065 0.08667746 0.11843700
干杯!
这会执行您在文中谈到的所有内容,但会跳过排序,因为您没有提到它,而且我不确定您为什么这样做:
occ_simulation2 = function(n_year, lambda, alpha, beta, max_event){
beta_events = matrix(rbeta(n_year * max_event, shape1 = alpha, shape2 = beta), nrow = n_year)
n_events_per_year = rpois(n_year, lambda = lambda)
for(i in which(n_events_per_year < max_event)) {
beta_events[i, (n_events_per_year[i] + 1):max_event] = NA
}
cbind(1:n_year, beta_events)
}
occ_simulation2(n_year = 10, lambda = 10, alpha = 2, beta = 20, max_event = 5)
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 1 0.035977205 0.131498127 0.06717396 0.07395549 0.16532084
# [2,] 2 0.092411677 0.010091762 0.14054564 0.07560796 0.17471096
# [3,] 3 0.033394007 0.017621993 0.06469264 0.10337253 0.19579706
# [4,] 4 0.165301623 0.131111006 0.03285909 0.38068480 0.05473743
# [5,] 5 0.007820079 0.196192197 0.25096961 0.06851775 0.35516715
# [6,] 6 0.028011863 0.003841574 0.16924708 0.12446178 0.06525773
# [7,] 7 0.133261625 0.059417090 0.09608348 0.07471339 0.08303839
# [8,] 8 0.076545497 0.110469131 0.23364757 0.09250536 0.03295593
# [9,] 9 0.051244148 0.070419370 0.07127251 0.11847306 0.04112807
# [10,] 10 0.104567386 0.188888704 0.02556781 0.10075848 0.02456839
我有这么大的代码块,其中包含不同的 if 语句和针对这些 if 语句的不同 for 语句。有没有一种方法可以减少这段代码中 if 和 for 循环的数量,使其更加简洁和高效?
library(tidyverse)
occ_simulation <- function(nyears, lambda, alpha, beta){
data_matrix <- matrix(, nrow = nyears, ncol = 6)
for (z in 1:nyears){
data_matrix[z][1] <- z
}
for (yr in 1:nyears){
poisson_sim = rpois(1, lambda)
for (number_of_events in poisson_sim){
if (number_of_events == 1){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, 2] <- beta_sim
} else if (number_of_events == 2){
for (i in 2:3){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else if (number_of_events == 3){
for (i in 2:4){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else if (number_of_events == 4){
for (i in 2:5){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
} else{
for (i in 2:6){
beta_sim = rbeta(1, alpha, beta)
data_matrix[yr, i] <- beta_sim
}
}
}
}
sorted_matrix <- cbind(data_matrix[,1],t(apply(data_matrix[,2:6],1,function(x) sort(x))))
G <- sorted_matrix %>% as.data.frame %>%
pivot_longer(-V1) %>%
ggplot(aes(x=factor(V1),y=value,color=name,group=name))+
geom_point()+
labs(color='Column',x='Time (Years)', y ='Probability')+
theme_bw()
return(G)
}
manual = occ_simulation(10, 10, 2, 20)
manual
此代码的作用是输入您想要模拟的时间范围,然后每年进行泊松模拟以计算该年发生的事件数。然后取决于那一年发生的事件的数量(最多为 5)。然后,根据发生的事件数量,它会为每个事件运行测试版模拟,这样您就有了一年中发生的 5 个“事件”的价值。然后它只是将其放入一个矩阵中,这样我们就得到了一个矩阵,其中包含年数值与已发生事件数的值。
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0.011466314 0.05644778 0.09415982 0.24654834 0.31950041
[2,] 2 0.005988383 0.05334661 0.07467286 0.10501165 0.18135706
[3,] 3 0.030178740 0.04501533 0.07642787 0.11537804 0.12156121
[4,] 4 0.033208015 0.04391486 0.10769396 0.12492813 0.19938551
[5,] 5 0.026646013 0.03085844 0.06188760 0.10742163 0.16181556
[6,] 6 0.021271089 0.03010617 0.08581937 0.11578462 0.40768207
[7,] 7 0.032381818 0.06602770 0.08423590 0.10511102 0.15810456
[8,] 8 0.030124977 0.04863202 0.08484395 0.08790361 0.09787569
[9,] 9 0.043273119 0.05148791 0.06314097 0.10162677 0.10308642
[10,] 10 0.045976676 0.06381831 0.07352065 0.08667746 0.11843700
干杯!
这会执行您在文中谈到的所有内容,但会跳过排序,因为您没有提到它,而且我不确定您为什么这样做:
occ_simulation2 = function(n_year, lambda, alpha, beta, max_event){
beta_events = matrix(rbeta(n_year * max_event, shape1 = alpha, shape2 = beta), nrow = n_year)
n_events_per_year = rpois(n_year, lambda = lambda)
for(i in which(n_events_per_year < max_event)) {
beta_events[i, (n_events_per_year[i] + 1):max_event] = NA
}
cbind(1:n_year, beta_events)
}
occ_simulation2(n_year = 10, lambda = 10, alpha = 2, beta = 20, max_event = 5)
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 1 0.035977205 0.131498127 0.06717396 0.07395549 0.16532084
# [2,] 2 0.092411677 0.010091762 0.14054564 0.07560796 0.17471096
# [3,] 3 0.033394007 0.017621993 0.06469264 0.10337253 0.19579706
# [4,] 4 0.165301623 0.131111006 0.03285909 0.38068480 0.05473743
# [5,] 5 0.007820079 0.196192197 0.25096961 0.06851775 0.35516715
# [6,] 6 0.028011863 0.003841574 0.16924708 0.12446178 0.06525773
# [7,] 7 0.133261625 0.059417090 0.09608348 0.07471339 0.08303839
# [8,] 8 0.076545497 0.110469131 0.23364757 0.09250536 0.03295593
# [9,] 9 0.051244148 0.070419370 0.07127251 0.11847306 0.04112807
# [10,] 10 0.104567386 0.188888704 0.02556781 0.10075848 0.02456839