如何使用gekko估计FOPDT方程中的theta值?
How to estimate theta value in FOPDT equation using gekko?
我正在尝试使用 GEKKO 来拟合某个数据集,使用 FOPDT 优化方法来估计 k、tau 和 theta。
我在 https://apmonitor.com/pdc/index.php/Main/FirstOrderOptimization 上看到了使用 odeint 的例子,并尝试用 GEKKO 做同样的事情,但我不能在等式中使用 theta 的值。
我看到了这个问题 and the docs https://apmonitor.com/wiki/index.php/Apps/TimeDelay,但是在这种情况下我想估计theta的值而不是使用初始猜测值。我尝试使用 gekko 的延迟,但我得到一个错误,它只有在延迟是一个 int 值(而不是 gekko FV)时才有效。
我也尝试在等式中直接使用时间,但我无法弄清楚如何将 x(t-theta) 放在那里,因为我不能用 gekko 变量执行该语法。
import pandas as pd
import numpy as np
from gekko import GEKKO
import plotly.express as px
data = pd.read_csv('data.csv',sep=',',header=0,index_col=0)
xm1 = data['x']
ym1 = data['y']
xm = xm1.to_numpy()
ym = ym1.to_numpy()
xm_r = len(xm)
tm = np.linspace(0,xm_r-1,xm_r)
m = GEKKO()
m.options.IMODE=5
m.time = tm
k = m.FV()
k.STATUS=1
tau = m.FV()
tau.STATUS=1
theta = m.FV()
theta.STATUS=1
x = m.Param(value=xm)
y = m.CV()
y.FSTATUS = 1
yObj = m.Param(value=ym)
xtheta = m.Var()
m.delay(x,xtheta,theta)
m.Equation(y.dt()==(-y + k * xtheta)/tau)
m.Minimize((y-yObj)**2)
m.options.EV_TYPE=2
m.solve(disp=True)
以下是在模型中实现变量 time-delay 的一些策略,例如当优化器调整一阶加死时间 (FOPDT) 模型中的时间延迟时。
- 创建时间
t
和输入 u
之间关系的三次样条(连续逼近)。这允许小数时间延迟不限于采样间隔的整数倍。
- 创建
time
作为导数等于1的变量。
- 用等式
tc==time-theta
定义tc
得到时移值。这将查找对应于此 tc
值的样条 uc
值。
您还可以使用 Excel 或其他工具 fit the FOPDT model 获取数据。
from gekko import GEKKO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# load data
url = 'http://apmonitor.com/do/uploads/Main/tclab_siso_data.txt'
data = pd.read_csv(url)
t = data['time'].values
u = data['voltage'].values
y = data['temperature'].values
m = GEKKO(remote=False)
m.time = t; time = m.Var(0); m.Equation(time.dt()==1)
K = m.FV(lb=0,ub=1); K.STATUS=1
tau = m.FV(lb=1,ub=300); tau.STATUS=1
theta = m.FV(lb=2,ub=30); theta.STATUS=1
# create cubic spline with t versus u
uc = m.Var(u); tc = m.Var(t); m.Equation(tc==time-theta)
m.cspline(tc,uc,t,u,bound_x=False)
ym = m.Param(y)
yp = m.Var(y); m.Equation(tau*yp.dt()+(yp-y[0])==K*(uc-u[0]))
m.Minimize((yp-ym)**2)
m.options.IMODE=5
m.solve()
print('K: ', K.value[0])
print('tau: ', tau.value[0])
print('theta: ', theta.value[0])
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$V_1$ (mV)'])
plt.ylabel('MV Voltage (mV)')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$T_{1meas}$',r'$T_{1pred}$'])
plt.ylabel('CV Temp (degF)')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()
K: 0.25489655932
tau: 229.06377617
theta: 2.0
另一种方法是估计 higher-order ARX model,然后确定 beta
项的统计显着性。这是使用 Gekko sysid
函数的示例。
from gekko import GEKKO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# load data and parse into columns
url = 'http://apmonitor.com/do/uploads/Main/tclab_siso_data.txt'
data = pd.read_csv(url)
t = data['time']
u = data['voltage']
y = data['temperature']
# generate time-series model
m = GEKKO()
# system identification
na = 5 # output coefficients
nb = 5 # input coefficients
yp,p,K = m.sysid(t,u,y,na,nb,pred='meas')
print('alpha: ', p['a'])
print('beta: ', p['b'])
print('gamma: ', p['c'])
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$V_1$ (mV)'])
plt.ylabel('MV Voltage (mV)')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$T_{1meas}$',r'$T_{1pred}$'])
plt.ylabel('CV Temp (degF)')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()
结果:
alpha: [[0.525143 ]
[0.19284469]
[0.08177381]
[0.06152181]
[0.12918898]]
beta: [[[-8.51804876e-05]
[ 5.88425202e-04]
[ 1.99205676e-03]
[-2.81456773e-03]
[ 2.38110003e-03]]]
gamma: [0.75189199]
前两个 beta
项几乎为零,但它们也可以保留在模型中以 higher-order 表示系统。
我正在尝试使用 GEKKO 来拟合某个数据集,使用 FOPDT 优化方法来估计 k、tau 和 theta。
我在 https://apmonitor.com/pdc/index.php/Main/FirstOrderOptimization 上看到了使用 odeint 的例子,并尝试用 GEKKO 做同样的事情,但我不能在等式中使用 theta 的值。
我看到了这个问题
import pandas as pd
import numpy as np
from gekko import GEKKO
import plotly.express as px
data = pd.read_csv('data.csv',sep=',',header=0,index_col=0)
xm1 = data['x']
ym1 = data['y']
xm = xm1.to_numpy()
ym = ym1.to_numpy()
xm_r = len(xm)
tm = np.linspace(0,xm_r-1,xm_r)
m = GEKKO()
m.options.IMODE=5
m.time = tm
k = m.FV()
k.STATUS=1
tau = m.FV()
tau.STATUS=1
theta = m.FV()
theta.STATUS=1
x = m.Param(value=xm)
y = m.CV()
y.FSTATUS = 1
yObj = m.Param(value=ym)
xtheta = m.Var()
m.delay(x,xtheta,theta)
m.Equation(y.dt()==(-y + k * xtheta)/tau)
m.Minimize((y-yObj)**2)
m.options.EV_TYPE=2
m.solve(disp=True)
以下是在模型中实现变量 time-delay 的一些策略,例如当优化器调整一阶加死时间 (FOPDT) 模型中的时间延迟时。
- 创建时间
t
和输入u
之间关系的三次样条(连续逼近)。这允许小数时间延迟不限于采样间隔的整数倍。 - 创建
time
作为导数等于1的变量。 - 用等式
tc==time-theta
定义tc
得到时移值。这将查找对应于此tc
值的样条uc
值。
您还可以使用 Excel 或其他工具 fit the FOPDT model 获取数据。
from gekko import GEKKO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# load data
url = 'http://apmonitor.com/do/uploads/Main/tclab_siso_data.txt'
data = pd.read_csv(url)
t = data['time'].values
u = data['voltage'].values
y = data['temperature'].values
m = GEKKO(remote=False)
m.time = t; time = m.Var(0); m.Equation(time.dt()==1)
K = m.FV(lb=0,ub=1); K.STATUS=1
tau = m.FV(lb=1,ub=300); tau.STATUS=1
theta = m.FV(lb=2,ub=30); theta.STATUS=1
# create cubic spline with t versus u
uc = m.Var(u); tc = m.Var(t); m.Equation(tc==time-theta)
m.cspline(tc,uc,t,u,bound_x=False)
ym = m.Param(y)
yp = m.Var(y); m.Equation(tau*yp.dt()+(yp-y[0])==K*(uc-u[0]))
m.Minimize((yp-ym)**2)
m.options.IMODE=5
m.solve()
print('K: ', K.value[0])
print('tau: ', tau.value[0])
print('theta: ', theta.value[0])
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$V_1$ (mV)'])
plt.ylabel('MV Voltage (mV)')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$T_{1meas}$',r'$T_{1pred}$'])
plt.ylabel('CV Temp (degF)')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()
K: 0.25489655932
tau: 229.06377617
theta: 2.0
另一种方法是估计 higher-order ARX model,然后确定 beta
项的统计显着性。这是使用 Gekko sysid
函数的示例。
from gekko import GEKKO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# load data and parse into columns
url = 'http://apmonitor.com/do/uploads/Main/tclab_siso_data.txt'
data = pd.read_csv(url)
t = data['time']
u = data['voltage']
y = data['temperature']
# generate time-series model
m = GEKKO()
# system identification
na = 5 # output coefficients
nb = 5 # input coefficients
yp,p,K = m.sysid(t,u,y,na,nb,pred='meas')
print('alpha: ', p['a'])
print('beta: ', p['b'])
print('gamma: ', p['c'])
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$V_1$ (mV)'])
plt.ylabel('MV Voltage (mV)')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$T_{1meas}$',r'$T_{1pred}$'])
plt.ylabel('CV Temp (degF)')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()
结果:
alpha: [[0.525143 ]
[0.19284469]
[0.08177381]
[0.06152181]
[0.12918898]]
beta: [[[-8.51804876e-05]
[ 5.88425202e-04]
[ 1.99205676e-03]
[-2.81456773e-03]
[ 2.38110003e-03]]]
gamma: [0.75189199]
前两个 beta
项几乎为零,但它们也可以保留在模型中以 higher-order 表示系统。