如何在 R 中使用 tidyeval 创建一个包含所有级别因子的小型预测数据集?
How do I use tidyeval in R to create a small prediction dataset that has all levels of factors?
我正在尝试使用 modelr::data_grid()
函数获得一个预测网格,该函数具有模型的一个因子的所有水平,而模型中的另一个因子只有“典型”水平。问题在于,对预测网格中保持不变的因子的调用 levels()
应该 return 原始数据中存在的所有级别。否则,一些预测函数可能会失败,return 臭名昭著的
Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
contrasts can be applied only to factors with 2 or more levels
这里展示了我可以从 modelr::data_grid()
中得到什么,以及我想要什么。
library(tidyverse)
co2_mod <- slice(CO2, -1, -43)
fit <- lm(uptake ~ Type + Treatment, data = co2_mod)
grid_df <- modelr::data_grid(co2_mod, Type, .model = fit) %>%
mutate(Treatment = factor(Treatment))
grid_df
#> # A tibble: 2 x 2
#> Type Treatment
#> <fct> <fct>
#> 1 Quebec chilled
#> 2 Mississippi chilled
levels(grid_df$Treatment)
#> [1] "chilled"
我想要
levels(grid_df$Treatment)
[1] "nonchilled" "chilled"
数据集中只有 1 个水平的因子变量应该“知道”原始数据集中所有可能的因子。例如,请参阅下面 rstanarm
小插图的屏幕截图,该小插图显示需要将 Male
和 Female
作为级别,即使预测是保持 gender
等于Female
.
我已经尝试编写几个函数来实现我的目标。有一个重复数据集 1000 次的额外步骤,因为我将此网格用作 newdata
来自 rstanarm
模型拟合的后验预测分布。
辅助功能(有效):
get_all_levels <- function(v, dataset){
v <- enquo(v)
a <- select(dataset, !!v) %>% as_vector()
l <- levels(a)
return(l)
}
主函数,调用辅助函数(这个不行):
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(., df))))
return(grid)
}
这是一个小的 reprex,您可以 运行 这些函数。
library(tidyverse)
get_all_levels <- function(v, dataset){
v <- enquo(v)
d <- as_tibble(dataset)
a <- select(d, !!v) %>% as_vector()
l <- levels(a)
return(l)
}
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(., df))))
return(grid)
}
co2_mod <- slice(CO2, -1, -43)
fit <- lm(conc ~ Type + Treatment, data = co2_mod)
get_all_levels(Type, co2_mod)
#> [1] "Quebec" "Mississippi"
grid_all_levels(fit, Type, co2_mod)
#> Note: Using an external vector in selections is ambiguous.
#> ℹ Use `all_of(.)` instead of `.` to silence this message.
#> ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#> This message is displayed once per session.
#> Error: Problem with `mutate()` input `..1`.
#> x Can't subset columns that don't exist.
#> x Columns `chilled`, `chilled`, `chilled`, `chilled`, `chilled`, etc. don't exist.
#> ℹ Input `..1` is `across(...)`.
我很确定问题出在我如何在 grid_all_levels
函数的 get_all_levels
调用中使用 .
。
如何让 grid_all_levels()
工作?
更新
我根据以下答案修改了 grid_all_levels()
函数,使其看起来像这样:
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(cur_column(), df))))
return(grid)
}
哪个return
#> # A tibble: 2,000 x 3
#> rep Type Treatment
#> <dbl> <fct> <fct>
#> 1 1 Quebec chilled
#> 2 1 Mississippi chilled
#> 3 2 Quebec chilled
#> 4 2 Mississippi chilled
#> 5 3 Quebec chilled
#> 6 3 Mississippi chilled
#> 7 4 Quebec chilled
#> 8 4 Mississippi chilled
#> 9 5 Quebec chilled
#> 10 5 Mississippi chilled
#> # … with 1,990 more rows
levels(a$Treatment)
#> [1] "nonchilled" "chilled"
这正是我想要的!
问题是交叉内的 .
是实际的列而不是列的名称。遗憾的是,无法在 across
调用中获取名称,但是使用 purrr::reduce
我们可以解决此问题:
library(tidyverse)
levelize <- function(.x, .y){
mutate(.x, !!paste0(.y) := factor(!!sym(.y), levels = get_all_levels(!!sym(.y), df) ) )
}
estimate_prevalence_differences_polr <- function(model, variable, df){
variable <- enquo(variable)
# putting the names of the factor variables inside a vector
vars <- sapply(df, function(x) is.factor(x))
vars <- names(vars)[vars]
expand_grid(
rep = 1:1000,
modelr::data_grid(df, !!variable, .model = model)
) %>%
### looping through the vars that are factor
## the .x argument is the one set by .init i.e the grid
## the .y argument is the element of the vars vector in the current iter
## the first iter we have .y="Type" and .x=.
## inside the levelize function
## basically mutate .x and change the variable named .y (Type) to become a factor
## with the levels returned from the original df
reduce(intersect(vars, colnames(.)), levelize, .init=.)
}
现在调用函数后级别设置正确,我们可以通过打印每个 factor
列的唯一值来检查这一点:
estimate_prevalence_differences_polr(fit, Type, df) %>% select(where(is.factor)) %>% map(unique)
$Type
[1] Quebec Mississippi
Levels: Quebec Mississippi
$Plant
[1] Qc2
Levels: Qn1 Qn2 Qn3 Qc1 Qc3 Qc2 Mn3 Mn2 Mn1 Mc2 Mc3 Mc1
$Treatment
[1] chilled nonchilled
Levels: nonchilled chilled
编辑:
一种更简单的解决方案是使用 cur_column
我第一次写答案时并没有考虑这个选项。所以基本上不是将 .
传递给 get_all_levels
而是传递 cur_column()
即
expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(cur_column(), df))))
我认为你让它变得比它需要的更复杂。如果我删除所有 tidyeval 的东西,我们会得到更简单的东西:
mutate(across(where(is.character), ~ factor(., levels = levels(.))))
您可以将 ~
lambda 提取到可重复使用的命名函数中。
不过,此实现会立即让我想到一些问题。由于 levels()
returns NULL
具有字符向量,因此这仅适用于因子。加上因素,这是 no-op。我不确定你想要达到什么目的。
另外,get-all-levels 实现有一个问题:它需要一个 selection,它可以 return 多个向量,例如starts_with()
。在这种情况下,你会得到一个令人困惑的错误。
我正在尝试使用 modelr::data_grid()
函数获得一个预测网格,该函数具有模型的一个因子的所有水平,而模型中的另一个因子只有“典型”水平。问题在于,对预测网格中保持不变的因子的调用 levels()
应该 return 原始数据中存在的所有级别。否则,一些预测函数可能会失败,return 臭名昭著的
Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
contrasts can be applied only to factors with 2 or more levels
这里展示了我可以从 modelr::data_grid()
中得到什么,以及我想要什么。
library(tidyverse)
co2_mod <- slice(CO2, -1, -43)
fit <- lm(uptake ~ Type + Treatment, data = co2_mod)
grid_df <- modelr::data_grid(co2_mod, Type, .model = fit) %>%
mutate(Treatment = factor(Treatment))
grid_df
#> # A tibble: 2 x 2
#> Type Treatment
#> <fct> <fct>
#> 1 Quebec chilled
#> 2 Mississippi chilled
levels(grid_df$Treatment)
#> [1] "chilled"
我想要
levels(grid_df$Treatment)
[1] "nonchilled" "chilled"
数据集中只有 1 个水平的因子变量应该“知道”原始数据集中所有可能的因子。例如,请参阅下面 rstanarm
小插图的屏幕截图,该小插图显示需要将 Male
和 Female
作为级别,即使预测是保持 gender
等于Female
.
我已经尝试编写几个函数来实现我的目标。有一个重复数据集 1000 次的额外步骤,因为我将此网格用作 newdata
来自 rstanarm
模型拟合的后验预测分布。
辅助功能(有效):
get_all_levels <- function(v, dataset){
v <- enquo(v)
a <- select(dataset, !!v) %>% as_vector()
l <- levels(a)
return(l)
}
主函数,调用辅助函数(这个不行):
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(., df))))
return(grid)
}
这是一个小的 reprex,您可以 运行 这些函数。
library(tidyverse)
get_all_levels <- function(v, dataset){
v <- enquo(v)
d <- as_tibble(dataset)
a <- select(d, !!v) %>% as_vector()
l <- levels(a)
return(l)
}
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(., df))))
return(grid)
}
co2_mod <- slice(CO2, -1, -43)
fit <- lm(conc ~ Type + Treatment, data = co2_mod)
get_all_levels(Type, co2_mod)
#> [1] "Quebec" "Mississippi"
grid_all_levels(fit, Type, co2_mod)
#> Note: Using an external vector in selections is ambiguous.
#> ℹ Use `all_of(.)` instead of `.` to silence this message.
#> ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#> This message is displayed once per session.
#> Error: Problem with `mutate()` input `..1`.
#> x Can't subset columns that don't exist.
#> x Columns `chilled`, `chilled`, `chilled`, `chilled`, `chilled`, etc. don't exist.
#> ℹ Input `..1` is `across(...)`.
我很确定问题出在我如何在 grid_all_levels
函数的 get_all_levels
调用中使用 .
。
如何让 grid_all_levels()
工作?
更新
我根据以下答案修改了 grid_all_levels()
函数,使其看起来像这样:
grid_all_levels <- function(model, variable, df){
variable <- enquo(variable)
grid <- expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(cur_column(), df))))
return(grid)
}
哪个return
#> # A tibble: 2,000 x 3
#> rep Type Treatment
#> <dbl> <fct> <fct>
#> 1 1 Quebec chilled
#> 2 1 Mississippi chilled
#> 3 2 Quebec chilled
#> 4 2 Mississippi chilled
#> 5 3 Quebec chilled
#> 6 3 Mississippi chilled
#> 7 4 Quebec chilled
#> 8 4 Mississippi chilled
#> 9 5 Quebec chilled
#> 10 5 Mississippi chilled
#> # … with 1,990 more rows
levels(a$Treatment)
#> [1] "nonchilled" "chilled"
这正是我想要的!
问题是交叉内的 .
是实际的列而不是列的名称。遗憾的是,无法在 across
调用中获取名称,但是使用 purrr::reduce
我们可以解决此问题:
library(tidyverse)
levelize <- function(.x, .y){
mutate(.x, !!paste0(.y) := factor(!!sym(.y), levels = get_all_levels(!!sym(.y), df) ) )
}
estimate_prevalence_differences_polr <- function(model, variable, df){
variable <- enquo(variable)
# putting the names of the factor variables inside a vector
vars <- sapply(df, function(x) is.factor(x))
vars <- names(vars)[vars]
expand_grid(
rep = 1:1000,
modelr::data_grid(df, !!variable, .model = model)
) %>%
### looping through the vars that are factor
## the .x argument is the one set by .init i.e the grid
## the .y argument is the element of the vars vector in the current iter
## the first iter we have .y="Type" and .x=.
## inside the levelize function
## basically mutate .x and change the variable named .y (Type) to become a factor
## with the levels returned from the original df
reduce(intersect(vars, colnames(.)), levelize, .init=.)
}
现在调用函数后级别设置正确,我们可以通过打印每个 factor
列的唯一值来检查这一点:
estimate_prevalence_differences_polr(fit, Type, df) %>% select(where(is.factor)) %>% map(unique)
$Type
[1] Quebec Mississippi
Levels: Quebec Mississippi
$Plant
[1] Qc2
Levels: Qn1 Qn2 Qn3 Qc1 Qc3 Qc2 Mn3 Mn2 Mn1 Mc2 Mc3 Mc1
$Treatment
[1] chilled nonchilled
Levels: nonchilled chilled
编辑:
一种更简单的解决方案是使用 cur_column
我第一次写答案时并没有考虑这个选项。所以基本上不是将 .
传递给 get_all_levels
而是传递 cur_column()
即
expand_grid(
rep = seq(1, 1000, 1),
modelr::data_grid(df, !!variable, .model = model)
) %>%
mutate(across(where(is.character), ~factor(., levels = get_all_levels(cur_column(), df))))
我认为你让它变得比它需要的更复杂。如果我删除所有 tidyeval 的东西,我们会得到更简单的东西:
mutate(across(where(is.character), ~ factor(., levels = levels(.))))
您可以将 ~
lambda 提取到可重复使用的命名函数中。
不过,此实现会立即让我想到一些问题。由于 levels()
returns NULL
具有字符向量,因此这仅适用于因子。加上因素,这是 no-op。我不确定你想要达到什么目的。
另外,get-all-levels 实现有一个问题:它需要一个 selection,它可以 return 多个向量,例如starts_with()
。在这种情况下,你会得到一个令人困惑的错误。