如何找到数据框中每个点相对于另一个数据框中所有点的最小距离?
How do I find the minimum distance for each point in a dataframe relative to all points in another dataframe?
我有两个包含景点坐标的数据框并且存在。
import pandas as pd
import geopy
from geopy.distance import geodesic
attr = pd.DataFrame(
{'attraction':['circuit', 'roller coaster'],
'latitude':[53.35923, 53.35958],
'longitude':[83.71394, 83.71256]})
exits = pd.DataFrame(
{'exits':['exit','exit2','exit3', 'exit4'],
'latitude':[53.35911, 53.3606, 53.35953, 53.3603],
'longitude':[83.71503, 83.71407, 83.71154, 83.71216]})
attraction latitude longitude
0 circuit 53.35923 83.71394
1 roller coaster 53.35958 83.71256
exits latitude longitude
0 exit 53.35911 83.71503
1 exit2 53.36060 83.71407
2 exit3 53.35953 83.71154
3 exit4 53.36030 83.71216
我想在第一个数据框中添加一列,其中包含到最近出口的距离(最小距离)。它必须看起来像:
attraction min_distance
0 circuit 73.789480
1 roller coaster 68.137324
我有一个代码,但它远非理想,我想知道如何让它更容易
def distance(row, name, i):
return exits[name][[i]]
attr['d_to_e0_1'] = attr.apply(lambda r: distance(r, 'latitude', 0), axis=1)
attr['d_to_e0_2'] = attr.apply(lambda r: distance(r, 'longitude', 0), axis=1)
attr['d_to_e1_1'] = attr.apply(lambda r: distance(r, 'latitude', 1), axis=1)
attr['d_to_e1_2'] = attr.apply(lambda r: distance(r, 'longitude', 1), axis=1)
attr['d_to_e2_1'] = attr.apply(lambda r: distance(r, 'latitude', 2), axis=1)
attr['d_to_e2_2'] = attr.apply(lambda r: distance(r, 'longitude', 2), axis=1)
attr['d_to_e3_1'] = attr.apply(lambda r: distance(r, 'latitude', 3), axis=1)
attr['d_to_e3_2'] = attr.apply(lambda r: distance(r, 'longitude', 3), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e0_1, row.d_to_e0_2)).m
attr['dist_to_e0'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e1_1, row.d_to_e1_2)).m
attr['dist_to_e1'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e2_1, row.d_to_e2_2)).m
attr['dist_to_e2'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e3_1, row.d_to_e3_2)).m
attr['dist_to_e3'] = attr.apply(lambda r: distance(r), axis=1)
def min_distance(row):
return min (row.dist_to_e0, row.dist_to_e1, row.dist_to_e2, row.dist_to_e3)
attr['min_distance'] = attr.apply(lambda r: min_distance(r), axis=1)
attr[['attraction', 'min_distance']].copy()
我做了以下事情:
for att in attr.index:
distances = []
for ex in exits.index:
distances.append(geopy.distance.distance(attr.loc[att, ['latitude','longitude']], exits.loc[ex,['latitude','longitude']]))
min_dist = min(distances)
attr.loc[att, 'min_distance'] = min_dist
attr
attraction latitude longitude min_distance
0 circuit 53.35923 83.71394 0.07378947966924111 km
1 roller coaster 53.35958 83.71256 0.06813732373534863 km
我有两个包含景点坐标的数据框并且存在。
import pandas as pd
import geopy
from geopy.distance import geodesic
attr = pd.DataFrame(
{'attraction':['circuit', 'roller coaster'],
'latitude':[53.35923, 53.35958],
'longitude':[83.71394, 83.71256]})
exits = pd.DataFrame(
{'exits':['exit','exit2','exit3', 'exit4'],
'latitude':[53.35911, 53.3606, 53.35953, 53.3603],
'longitude':[83.71503, 83.71407, 83.71154, 83.71216]})
attraction latitude longitude
0 circuit 53.35923 83.71394
1 roller coaster 53.35958 83.71256
exits latitude longitude
0 exit 53.35911 83.71503
1 exit2 53.36060 83.71407
2 exit3 53.35953 83.71154
3 exit4 53.36030 83.71216
我想在第一个数据框中添加一列,其中包含到最近出口的距离(最小距离)。它必须看起来像:
attraction min_distance
0 circuit 73.789480
1 roller coaster 68.137324
我有一个代码,但它远非理想,我想知道如何让它更容易
def distance(row, name, i):
return exits[name][[i]]
attr['d_to_e0_1'] = attr.apply(lambda r: distance(r, 'latitude', 0), axis=1)
attr['d_to_e0_2'] = attr.apply(lambda r: distance(r, 'longitude', 0), axis=1)
attr['d_to_e1_1'] = attr.apply(lambda r: distance(r, 'latitude', 1), axis=1)
attr['d_to_e1_2'] = attr.apply(lambda r: distance(r, 'longitude', 1), axis=1)
attr['d_to_e2_1'] = attr.apply(lambda r: distance(r, 'latitude', 2), axis=1)
attr['d_to_e2_2'] = attr.apply(lambda r: distance(r, 'longitude', 2), axis=1)
attr['d_to_e3_1'] = attr.apply(lambda r: distance(r, 'latitude', 3), axis=1)
attr['d_to_e3_2'] = attr.apply(lambda r: distance(r, 'longitude', 3), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e0_1, row.d_to_e0_2)).m
attr['dist_to_e0'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e1_1, row.d_to_e1_2)).m
attr['dist_to_e1'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e2_1, row.d_to_e2_2)).m
attr['dist_to_e2'] = attr.apply(lambda r: distance(r), axis=1)
def distance(row):
return geopy.distance.distance((row.latitude, row.longitude), (row.d_to_e3_1, row.d_to_e3_2)).m
attr['dist_to_e3'] = attr.apply(lambda r: distance(r), axis=1)
def min_distance(row):
return min (row.dist_to_e0, row.dist_to_e1, row.dist_to_e2, row.dist_to_e3)
attr['min_distance'] = attr.apply(lambda r: min_distance(r), axis=1)
attr[['attraction', 'min_distance']].copy()
我做了以下事情:
for att in attr.index:
distances = []
for ex in exits.index:
distances.append(geopy.distance.distance(attr.loc[att, ['latitude','longitude']], exits.loc[ex,['latitude','longitude']]))
min_dist = min(distances)
attr.loc[att, 'min_distance'] = min_dist
attr
attraction latitude longitude min_distance
0 circuit 53.35923 83.71394 0.07378947966924111 km
1 roller coaster 53.35958 83.71256 0.06813732373534863 km