R boxplot 使用 apply() 从 boxplot() groupby 中保存离群值

R boxplot using apply() for saving outliers from boxplot() groupby

数据重塑或 apply() 函数发现并保存 boxplot() 函数中的异常值,同时按组标识符对数据进行分组。

我的第一次尝试是创建一个内部有 boxplot() 函数的函数来捕获异常值,例如。箱线图(...)$输出;然后 return $out(异常值)并将结果应用于 table df.events$outliers。 最终目标是 table 按组划分异常值,例如

e.g., OutliersByGroupTableName
group_id_name
outliers_from_boxplot

然后可以将使用日期事件范围的 select() 的箱线图 () 添加到新的字段列中,形成以下 table.

e.g., OutliersByGroupTableName
group_id_name
outliers_from_boxplot
time_range_outliers_from_boxplot

使用此代码,我的尝试是在函数内部创建 boxplot()。在 R 中使用应用来导航“组”和“排名”,使用数据框调用 FUN=test_func(df.events) 。这是我在使用 apply 转发到 boxplot() 函数和 table 字段旁边的 return 时遇到的问题(此代码视图中未显示)。 或者,apply() 是这项调查的最佳方法吗?

test_func <- function(df) {
  boxplot(df$rank ~ df$group, data=df, plot=FALSE, )$out
}
apply(df.events, c("group","rank"), FUN=test_func(df.events))

数据(输出)

> dput(head(df.events, 50))
structure(list(rank = c(0.5, 0.5, 0.5, 0.5, 0, 1, 1, 1, 1, 0, 
0, 0, 0.25, 0.25, 0, 2, 2, 2, 0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 
0.25, 0.25, 0.6, 0.6, 0, 0, 3, 3, 0.5, 0.5, 0.5, 3, 3, 3, 1.5, 
1, 1, 0, 1, 1, 0), group = c(751, 728, 753, 808, 909, 909, 920, 
728, 686, 727, 1025, 727, 728, 808, 750, 752, 752, 782, 752, 
686, 752, 808, 691, 920, 920, 727, 727, 782, 991, 727, 808, 
686, 728, 1025, 686, 920, 986, 782, 736, 909, 686, 782, 751, 
728, 782, 782, 909, 909, 686, 686), outliers = c("NA", "NA", 
"NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", 
"NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", 
"NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", 
"NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", 
"NA", "NA", "NA", "NA")), row.names = c(NA, -50L), class = c("tbl_df", 
"tbl", "data.frame"))
> 

如果我们需要动态传递排名列和组列的名称,然后将它们与数据集一起创建为参数,则可以使用 paste 创建公式并应用 boxplot

test_func <- function(df, colnm, grpcol){
       boxplot(as.formula(paste0(colnm, ' ~ ', grpcol)), data = df, plot = FALSE)
  }

然后我们可以申请

out <- test_func(df.events, 'rank', 'group')
str(out)
#List of 6
# $ stats: num [1:5, 1:16] 0 0 0.6 1 1 0 0 0 0 0 ...
# $ n    : num [1:16] 7 1 5 5 1 1 2 4 1 6 ...
# $ conf : num [1:2, 1:16] 0.00282 1.19718 0 0 0 ...
# $ out  : num [1:2] 3 0.25
# $ group: num [1:2] 1 3
# $ names: chr [1:16] "686" "691" "727" "728" ..