没有 pandas/numpy 的 Pythonic 数据分箱方式

Pythonic way of binning data without pandas/numpy

我正在寻找一种将包含数百个条目的数据集分箱到 20 个分箱中的方法。但是没有使用像 pandas(剪切)和 numpy(数字化)这样的大模块。 谁能想到比 18 个 elif 更好的解决方案?

您需要做的就是弄清楚每个元素在哪个箱子里。考虑到箱子的大小,如果它们是统一的,这是相当微不足道的。从您的数组中,您可以找到 minvalmaxval。然后,binwidth = (maxval - minval) / nbins。对于数组 elem 的一个元素,以及已知的最小值 minval 和 bin 宽度 binwidth,该元素将落在 bin 编号 int((elem - minval) / binwidth) 中。这留下了 elem == maxval 的边缘情况。在这种情况下,bin 编号等于 nbins(第 nbins + 1 个 bin,因为 python 是从零开始的),因此我们必须为这种情况减少 bin 编号.

因此我们可以编写一个函数来执行此操作:

import random

def splitIntoBins(arr, nbins, minval=None, maxval=None):
    minval = min(arr) if minval is None else minval # Select minval if specified, otherwise min of data
    maxval = max(arr) if maxval is None else maxval # Same for maxval
    
    binwidth = (maxval - minval) / nbins # Bin width
    allbins = [[] for _ in range(nbins)] # Pre-make a list-of-lists to hold values

    for elem in arr:
        binnum = int((elem - minval) // binwidth) # Find which bin this element belongs in
        binindex = min(nbins-1, binnum) # To handle the case of elem == maxval
        allbins[binindex].append(elem) # Add this element to the bin
    return allbins

# Make 1000 random numbers between 0 and 1
x = [random.random() for _ in range(1000)]

# split into 10 bins from 0 to 1, i.e. a bin every 0.1
b = splitIntoBins(x, 10, 0, 1)

# Get min, max, count for each bin
counts = [(min(v), max(v), len(v)) for v in b]
print(counts)

这给出了

[(0.00017731201786974626, 0.09983758434153, 101),
 (0.10111204267013452, 0.19959594179848794, 97),
 (0.20089309189822557, 0.2990120768922335, 100),
 (0.3013915797055913, 0.39922131591077614, 90),
 (0.4009006835799309, 0.49969892298935836, 83),
 (0.501675740585966, 0.5999729295882031, 119),
 (0.6010149249108184, 0.7000366124696699, 120),
 (0.7008002068562794, 0.7970568220766774, 91),
 (0.8018697850229161, 0.8990963218226316, 99),
 (0.9000732426223624, 0.9967964437788829, 100)]

这看起来像我们预期的那样。

对于非uniform bins,不再是算术计算。在这种情况下,元素 elem 位于下限小于 elem 且上限大于 elem.

的 bin 中
def splitIntoBins2(arr, bins):
    binends = bins[1:]
    binstarts = bins[:-1]
    allbins = [[] for _ in binends] # Pre-make a list-of-lists to hold values

    for elem in arr:
        for i, (lower_bound, upper_bound) in enumerate(zip(binstarts, binends)):
            if upper_bound >= elem and lower_bound <= elem:
                allbins[i].append(elem) # Add this element to the bin
                break
    return allbins