在 tkinter 上需要有关对象检测程序的帮助

Need help on tkinter about object detection program

我正在尝试制作一个 tkinter window 用户按下一个按钮,然后用户输入一个 img 供程序扫描 it.What 我想要的是图像出现在 tkinter 上window 并且程序不会结束而是继续所以用户输入另一个 image.My 输出是这个:

https://prnt.sc/w837e2

https://prnt.sc/w838c2

https://prnt.sc/w83c69

tk window 被破坏,所有显示的是 output.Also 当文件对话框打开并且用户没有输入图像时 tkwindow 也关闭。

代码如下:

import numpy as np
import argparse
import cv2
import tkinter as tk
from tkinter import filedialog


def search_image():                                                              
    global image1
    image1 = filedialog.askopenfilename()
    root.destroy()
    return image1

root = tk.Tk()                                                                   
root.geometry('1200x900-100-100')
root.resizable(False, False)
root.title('YOLO')
w = tk.Label(root, text = "IMAGE-DETECTION-YOLO", font = "Arial 36", bg ='lightgray', width = 900)
w.pack()
button = tk.Button(root, text = "CHOOSE", font = "Arial 36", command = search_image)
button.pack()
root.mainloop()


#######after that is code for the detection model############################


# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default=image1,
    help="path to input image")
ap.add_argument("-p", "--prototxt", default="MobileNetSSD_deploy.prototxt.txt",
    help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", default="MobileNetSSD_deploy.caffemodel",
    help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
    "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
    "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
    "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

# load our serialized model from disk
print("[INFO] loading model...")
model = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
# (note: normalization is done via the authors of the MobileNet SSD
# implementation)
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)

# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
model.setInput(blob)
detections = model.forward()

# loop over the detections
for i in np.arange(0, detections.shape[2]):
    # extract the confidence (i.e., probability) associated with the
    # prediction
    confidence = detections[0, 0, i, 2]

    # filter out weak detections by ensuring the `confidence` is
    # greater than the minimum confidence
    if confidence > args["confidence"]:
        # extract the index of the class label from the `detections`,
        # then compute the (x, y)-coordinates of the bounding box for
        # the object
        idx = int(detections[0, 0, i, 1])
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")

        # display the prediction
        label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
        print("[INFO] {}".format(label))
        cv2.rectangle(image, (startX, startY), (endX, endY),
            COLORS[idx], 2)
        y = startY - 15 if startY - 15 > 15 else startY + 15
        cv2.putText(image, label, (startX, y),
            cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

# show the output image
cv2.imshow("Output", image)
cv2.imwrite('image_detected.jpg',image)
cv2.waitKey(0)

您应该将检测放在一个函数中,并在选择图像文件后调用该函数。同样使用 Pillow 模块转换结果图像并使用 Label.

显示结果图像
import numpy as np
import argparse
import cv2
import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk


def detect_objects(image1):
    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-i", "--image", default=image1,
        help="path to input image")
    ap.add_argument("-p", "--prototxt", default="MobileNetSSD_deploy.prototxt.txt",
        help="path to Caffe 'deploy' prototxt file")
    ap.add_argument("-m", "--model", default="MobileNetSSD_deploy.caffemodel",
        help="path to Caffe pre-trained model")
    ap.add_argument("-c", "--confidence", type=float, default=0.2,
        help="minimum probability to filter weak detections")
    args = vars(ap.parse_args())

    # initialize the list of class labels MobileNet SSD was trained to
    # detect, then generate a set of bounding box colors for each class
    CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
        "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
        "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
        "sofa", "train", "tvmonitor"]
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

    # load our serialized model from disk
    print("[INFO] loading model...")
    model = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

    # load the input image and construct an input blob for the image
    # by resizing to a fixed 300x300 pixels and then normalizing it
    # (note: normalization is done via the authors of the MobileNet SSD
    # implementation)
    image = cv2.imread(args["image"])
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)

    # pass the blob through the network and obtain the detections and
    # predictions
    print("[INFO] computing object detections...")
    model.setInput(blob)
    detections = model.forward()

    # loop over the detections
    for i in np.arange(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with the
        # prediction
        confidence = detections[0, 0, i, 2]

        # filter out weak detections by ensuring the `confidence` is
        # greater than the minimum confidence
        if confidence > args["confidence"]:
            # extract the index of the class label from the `detections`,
            # then compute the (x, y)-coordinates of the bounding box for
            # the object
            idx = int(detections[0, 0, i, 1])
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # display the prediction
            label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
            print("[INFO] {}".format(label))
            cv2.rectangle(image, (startX, startY), (endX, endY),
                COLORS[idx], 2)
            y = startY - 15 if startY - 15 > 15 else startY + 15
            cv2.putText(image, label, (startX, y),
                cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

    # show the output image
    image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    tkimage = ImageTk.PhotoImage(image)
    result.config(image=tkimage)
    result.iamge = tkimage

def search_image():                                                              
    image1 = filedialog.askopenfilename()
    if image1:
        detect_objects(image1)

root = tk.Tk()                                                                   
root.geometry('1200x900-100-100')
root.resizable(False, False)
root.title('YOLO')
w = tk.Label(root, text = "IMAGE-DETECTION-YOLO", font = "Arial 36", bg ='lightgray', width = 900)
w.pack()
button = tk.Button(root, text = "CHOOSE", font = "Arial 36", command = search_image)
button.pack()
# label to show the result
result = tk.Label(root)
result.pack()
root.mainloop()