df.drop_duplicates python

df.drop_duplicates python

运行 在尝试从数据框中删除正确的重复项时遇到了一些困难。

我有以下例子:

import numpy as np
import pandas as pd


test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10', 
        '2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
        'value' : [123, '', 324, '', '', '', 321],}

df = pd.DataFrame(data=test)

输出如下:

                  date value
0  2012-10-12 10:10:10   123
1  2012-10-12 10:10:10      
2  2012-10-19 10:55:10   324
3  2012-11-02 16:08:07      
4  2012-11-02 16:08:07      
5  2012-12-12 23:45:21      
6  2012-12-12 23:45:21   321

我的 desired 删除重复日期后的输出如下所示:

                  date value
0  2012-10-12 10:10:10   123
2  2012-10-19 10:55:10   324
3  2012-11-02 16:08:07      
6  2012-12-12 23:45:21   321 

但是,我迄今为止的约会尝试均未成功,如下所示:

尝试 1:-

df = df.drop_duplicates(subset='date')

                  date value
0  2012-10-12 10:10:10   123
2  2012-10-19 10:55:10   324
3  2012-11-02 16:08:07      
5  2012-12-12 23:45:21      

尝试 2:-

df = df.drop_duplicates(subset='date', keep='last')

                  date value
1  2012-10-12 10:10:10      
2  2012-10-19 10:55:10   324
4  2012-11-02 16:08:07      
6  2012-12-12 23:45:21   321

请您协助我达到 期望的 输出。非常感谢

import numpy as np
import pandas as pd


test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10', 
        '2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
        'value' : [123, np.nan, 324,  np.nan,  np.nan,  np.nan, 321],}

这应该可行!

df = pd.DataFrame(data=test)
df.sort_values(by = "value", inplace = True)
df = df.drop_duplicates(subset='date')
df = df.replace(np.nan, '', regex=True)
df.sort_index()

输出结果如下:

        date    value
0   2012-10-12 10:10:10 123
2   2012-10-19 10:55:10 324
3   2012-11-02 16:08:07 
6   2012-12-12 23:45:21 321  
import pandas as pd


test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10', 
        '2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
        'value' : [123, '', 324, '', '', '', 321],}

df = pd.DataFrame(data=test)

df["value_not_empty"] = df['value'].map(bool)
df = df.sort_values("value_not_empty")
df = df.drop(columns=["value_not_empty"])
df = df.drop_duplicates('date', keep='last')
df

一种方法是屏蔽列 value 中的空字符串,然后在 date 上分组并使用 first:

进行聚合
df['value'].mask(df['value'].eq('')).groupby(df['date']).first().fillna('').reset_index()

或者,您可以屏蔽列 value 中的空字符串并将其分配给临时列 key,然后在列 datekey 上对数据框进行排序,其次是 drop_duplicates:

df['key'] = df['value'].mask(df['value'].eq(''))
df.sort_values(['date', 'key']).drop_duplicates('date').drop('key', 1)

结果:

                  date value
0  2012-10-12 10:10:10   123
1  2012-10-19 10:55:10   324
2  2012-11-02 16:08:07      
3  2012-12-12 23:45:21   321