df.drop_duplicates python
df.drop_duplicates python
运行 在尝试从数据框中删除正确的重复项时遇到了一些困难。
我有以下例子:
import numpy as np
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, '', 324, '', '', '', 321],}
df = pd.DataFrame(data=test)
输出如下:
date value
0 2012-10-12 10:10:10 123
1 2012-10-12 10:10:10
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
4 2012-11-02 16:08:07
5 2012-12-12 23:45:21
6 2012-12-12 23:45:21 321
我的 desired 删除重复日期后的输出如下所示:
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
但是,我迄今为止的约会尝试均未成功,如下所示:
尝试 1:-
df = df.drop_duplicates(subset='date')
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
5 2012-12-12 23:45:21
尝试 2:-
df = df.drop_duplicates(subset='date', keep='last')
date value
1 2012-10-12 10:10:10
2 2012-10-19 10:55:10 324
4 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
请您协助我达到 期望的 输出。非常感谢
import numpy as np
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, np.nan, 324, np.nan, np.nan, np.nan, 321],}
这应该可行!
df = pd.DataFrame(data=test)
df.sort_values(by = "value", inplace = True)
df = df.drop_duplicates(subset='date')
df = df.replace(np.nan, '', regex=True)
df.sort_index()
输出结果如下:
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, '', 324, '', '', '', 321],}
df = pd.DataFrame(data=test)
df["value_not_empty"] = df['value'].map(bool)
df = df.sort_values("value_not_empty")
df = df.drop(columns=["value_not_empty"])
df = df.drop_duplicates('date', keep='last')
df
一种方法是屏蔽列 value
中的空字符串,然后在 date
上分组并使用 first
:
进行聚合
df['value'].mask(df['value'].eq('')).groupby(df['date']).first().fillna('').reset_index()
或者,您可以屏蔽列 value
中的空字符串并将其分配给临时列 key
,然后在列 date
和 key
上对数据框进行排序,其次是 drop_duplicates
:
df['key'] = df['value'].mask(df['value'].eq(''))
df.sort_values(['date', 'key']).drop_duplicates('date').drop('key', 1)
结果:
date value
0 2012-10-12 10:10:10 123
1 2012-10-19 10:55:10 324
2 2012-11-02 16:08:07
3 2012-12-12 23:45:21 321
运行 在尝试从数据框中删除正确的重复项时遇到了一些困难。
我有以下例子:
import numpy as np
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, '', 324, '', '', '', 321],}
df = pd.DataFrame(data=test)
输出如下:
date value
0 2012-10-12 10:10:10 123
1 2012-10-12 10:10:10
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
4 2012-11-02 16:08:07
5 2012-12-12 23:45:21
6 2012-12-12 23:45:21 321
我的 desired 删除重复日期后的输出如下所示:
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
但是,我迄今为止的约会尝试均未成功,如下所示:
尝试 1:-
df = df.drop_duplicates(subset='date')
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
5 2012-12-12 23:45:21
尝试 2:-
df = df.drop_duplicates(subset='date', keep='last')
date value
1 2012-10-12 10:10:10
2 2012-10-19 10:55:10 324
4 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
请您协助我达到 期望的 输出。非常感谢
import numpy as np
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, np.nan, 324, np.nan, np.nan, np.nan, 321],}
这应该可行!
df = pd.DataFrame(data=test)
df.sort_values(by = "value", inplace = True)
df = df.drop_duplicates(subset='date')
df = df.replace(np.nan, '', regex=True)
df.sort_index()
输出结果如下:
date value
0 2012-10-12 10:10:10 123
2 2012-10-19 10:55:10 324
3 2012-11-02 16:08:07
6 2012-12-12 23:45:21 321
import pandas as pd
test = {'date': ['2012-10-12 10:10:10', '2012-10-12 10:10:10', '2012-10-19 10:55:10',
'2012-11-02 16:08:07', '2012-11-02 16:08:07', '2012-12-12 23:45:21', '2012-12-12 23:45:21'],
'value' : [123, '', 324, '', '', '', 321],}
df = pd.DataFrame(data=test)
df["value_not_empty"] = df['value'].map(bool)
df = df.sort_values("value_not_empty")
df = df.drop(columns=["value_not_empty"])
df = df.drop_duplicates('date', keep='last')
df
一种方法是屏蔽列 value
中的空字符串,然后在 date
上分组并使用 first
:
df['value'].mask(df['value'].eq('')).groupby(df['date']).first().fillna('').reset_index()
或者,您可以屏蔽列 value
中的空字符串并将其分配给临时列 key
,然后在列 date
和 key
上对数据框进行排序,其次是 drop_duplicates
:
df['key'] = df['value'].mask(df['value'].eq(''))
df.sort_values(['date', 'key']).drop_duplicates('date').drop('key', 1)
结果:
date value
0 2012-10-12 10:10:10 123
1 2012-10-19 10:55:10 324
2 2012-11-02 16:08:07
3 2012-12-12 23:45:21 321