Python/Pandas 为即时交易量重新采样外汇即时交易数据
Python/Pandas resampling Forex tick data for tick volume
我有一堆滴答数据,我可以使用以下方法成功地将其重新采样为时间数据:
h5_file = pd.HDFStore(h5_path)
h5_file['fx_data'].groupby('Symbol')
ask = grouped['Ask'].resample('5Min', how='ohlc')
bid = grouped['Bid'].resample('5Min', how='ohlc')
但我还想 return 报价量。这应该只是组成每个样本的行数。如何才能最好地实现这一点?
此外 - 当我选择使用较小的时间范围重新采样时,偶尔会出现值为 N/A 的条柱,因为该时期没有价格变化。发生这种情况时,我希望前一个收盘价是当前柱上 OHLC 的值。
我搜索并找到了这段代码:
whatev.groupby('Symbol')closes = resampledData['close'].fillna(method='pad')
resampledData.apply(lambda x: x.fillna(closes)
我对 Python 和编程还很陌生,还不了解 lambas。这会仅更改关闭值还是我需要更改的所有值。非常感谢所有帮助。
我在 hdf5 中获得了您的部分示例 FX 数据(USD/EUR 2015 年 5 月)的副本,因此我将在此处用于说明目的。
import pandas as pd
Jian_h5 = '/media/Primary Disk/Jian_Python_Data_Storage.h5'
h5_file = pd.HDFStore(Jian_h5)
fx_df = h5_file['fx_tick_data']
# I've only got USD/EUR in this dataset, but let's still do a groupby symbol
# and assume you have multiple symbols
grouped = fx_df.groupby('Symbol')
# calculate sub-group average bid and ask price, and also number of ticks
freq = '1min'
# an empty DataFrame
result = pd.DataFrame()
# bid/ask price: forward fill make sense
result['avg_bid'] = grouped['Bid'].resample(freq, how='mean').fillna(method='ffill')
result['avg_ask'] = grouped['Ask'].resample(freq, how='mean').fillna(method='ffill')
# tick count: NaN should be replaced by zero
result['tick_counts'] = grouped['Ask'].resample(freq, how='count').fillna(0)
Out[59]:
avg_bid avg_ask tick_counts
Symbol Date_time
EUR/USD 2015-05-01 00:00:00 1.1210 1.1210 77
2015-05-01 00:01:00 1.1209 1.1210 117
2015-05-01 00:02:00 1.1209 1.1210 95
2015-05-01 00:03:00 1.1210 1.1210 46
2015-05-01 00:04:00 1.1211 1.1211 112
2015-05-01 00:05:00 1.1213 1.1213 193
2015-05-01 00:06:00 1.1214 1.1215 76
2015-05-01 00:07:00 1.1216 1.1216 103
2015-05-01 00:08:00 1.1216 1.1217 107
2015-05-01 00:09:00 1.1217 1.1217 17
2015-05-01 00:10:00 1.1216 1.1217 33
2015-05-01 00:11:00 1.1218 1.1218 56
2015-05-01 00:12:00 1.1217 1.1218 77
2015-05-01 00:13:00 1.1215 1.1215 18
2015-05-01 00:14:00 1.1215 1.1216 50
... ... ... ...
2015-05-31 23:45:00 1.0959 1.0960 37
2015-05-31 23:46:00 1.0959 1.0959 59
2015-05-31 23:47:00 1.0958 1.0959 62
2015-05-31 23:48:00 1.0956 1.0957 45
2015-05-31 23:49:00 1.0955 1.0956 67
2015-05-31 23:50:00 1.0955 1.0956 36
2015-05-31 23:51:00 1.0955 1.0956 35
2015-05-31 23:52:00 1.0956 1.0956 22
2015-05-31 23:53:00 1.0956 1.0957 29
2015-05-31 23:54:00 1.0957 1.0958 50
2015-05-31 23:55:00 1.0956 1.0957 30
2015-05-31 23:56:00 1.0957 1.0958 8
2015-05-31 23:57:00 1.0957 1.0958 45
2015-05-31 23:58:00 1.0957 1.0958 38
2015-05-31 23:59:00 1.0958 1.0958 30
[44640 rows x 3 columns]
我有一堆滴答数据,我可以使用以下方法成功地将其重新采样为时间数据:
h5_file = pd.HDFStore(h5_path)
h5_file['fx_data'].groupby('Symbol')
ask = grouped['Ask'].resample('5Min', how='ohlc')
bid = grouped['Bid'].resample('5Min', how='ohlc')
但我还想 return 报价量。这应该只是组成每个样本的行数。如何才能最好地实现这一点?
此外 - 当我选择使用较小的时间范围重新采样时,偶尔会出现值为 N/A 的条柱,因为该时期没有价格变化。发生这种情况时,我希望前一个收盘价是当前柱上 OHLC 的值。
我搜索并找到了这段代码:
whatev.groupby('Symbol')closes = resampledData['close'].fillna(method='pad')
resampledData.apply(lambda x: x.fillna(closes)
我对 Python 和编程还很陌生,还不了解 lambas。这会仅更改关闭值还是我需要更改的所有值。非常感谢所有帮助。
我在 hdf5 中获得了您的部分示例 FX 数据(USD/EUR 2015 年 5 月)的副本,因此我将在此处用于说明目的。
import pandas as pd
Jian_h5 = '/media/Primary Disk/Jian_Python_Data_Storage.h5'
h5_file = pd.HDFStore(Jian_h5)
fx_df = h5_file['fx_tick_data']
# I've only got USD/EUR in this dataset, but let's still do a groupby symbol
# and assume you have multiple symbols
grouped = fx_df.groupby('Symbol')
# calculate sub-group average bid and ask price, and also number of ticks
freq = '1min'
# an empty DataFrame
result = pd.DataFrame()
# bid/ask price: forward fill make sense
result['avg_bid'] = grouped['Bid'].resample(freq, how='mean').fillna(method='ffill')
result['avg_ask'] = grouped['Ask'].resample(freq, how='mean').fillna(method='ffill')
# tick count: NaN should be replaced by zero
result['tick_counts'] = grouped['Ask'].resample(freq, how='count').fillna(0)
Out[59]:
avg_bid avg_ask tick_counts
Symbol Date_time
EUR/USD 2015-05-01 00:00:00 1.1210 1.1210 77
2015-05-01 00:01:00 1.1209 1.1210 117
2015-05-01 00:02:00 1.1209 1.1210 95
2015-05-01 00:03:00 1.1210 1.1210 46
2015-05-01 00:04:00 1.1211 1.1211 112
2015-05-01 00:05:00 1.1213 1.1213 193
2015-05-01 00:06:00 1.1214 1.1215 76
2015-05-01 00:07:00 1.1216 1.1216 103
2015-05-01 00:08:00 1.1216 1.1217 107
2015-05-01 00:09:00 1.1217 1.1217 17
2015-05-01 00:10:00 1.1216 1.1217 33
2015-05-01 00:11:00 1.1218 1.1218 56
2015-05-01 00:12:00 1.1217 1.1218 77
2015-05-01 00:13:00 1.1215 1.1215 18
2015-05-01 00:14:00 1.1215 1.1216 50
... ... ... ...
2015-05-31 23:45:00 1.0959 1.0960 37
2015-05-31 23:46:00 1.0959 1.0959 59
2015-05-31 23:47:00 1.0958 1.0959 62
2015-05-31 23:48:00 1.0956 1.0957 45
2015-05-31 23:49:00 1.0955 1.0956 67
2015-05-31 23:50:00 1.0955 1.0956 36
2015-05-31 23:51:00 1.0955 1.0956 35
2015-05-31 23:52:00 1.0956 1.0956 22
2015-05-31 23:53:00 1.0956 1.0957 29
2015-05-31 23:54:00 1.0957 1.0958 50
2015-05-31 23:55:00 1.0956 1.0957 30
2015-05-31 23:56:00 1.0957 1.0958 8
2015-05-31 23:57:00 1.0957 1.0958 45
2015-05-31 23:58:00 1.0957 1.0958 38
2015-05-31 23:59:00 1.0958 1.0958 30
[44640 rows x 3 columns]