Pandas 有效地创建和填充新数据框(?)

Pandas creating and populating a new dataframe efficiently (?)

我正在从头开始创建一个新的 DataFrame,但我不确定我这样做的方式是否是最有效的方式。

我正在创建:

我还创建了一个新的警察专栏:

代码:

# create dataframes for each column
df1 = pd.concat([pd.DataFrame([1], columns=['NEVER']) for i in range(3070)],
          ignore_index=True)

df2 = pd.concat([pd.DataFrame([1], columns=['OCCASIONAL']) for i in range(1100)],
          ignore_index=True)

df3 = pd.concat([pd.DataFrame([1], columns=['FREQUENT']) for i in range(2200)],
          ignore_index=True)

# combine dataframes into one
frames = [df1, df2, df3]
df = pd.concat(frames)

# reset index
df = df.reset_index(drop=True)

df['POLICE'] = 0.0

# replace police column values
df.loc[0:69,'POLICE']=1.0
df.loc[3071:3180,'POLICE']=1.0
df.loc[5271:5490,'POLICE']=1.0

# convert NaN into 0
values=(0.0)
df = df.fillna(value=values)

我想我已经做到了,但是我的代码需要很长时间才能处理。这是正常现象,因为我正在创建 6000 多行,还是我的代码效率低下?

您可以使用 np.ones()np.zeros 用 1 和 0 填充该列。使用 numpy 可以获得显着的加速。

import pandas as pd
import numpy as np

# create dataframes for each column
df1 = pd.DataFrame(np.ones(3070), columns=['NEVER'])

df2 = pd.DataFrame(np.ones(1100), columns=['OCCASIONAL'])

df3 = pd.DataFrame(np.ones(2200), columns=['FREQUENT'])

# combine dataframes into one
frames = [df1, df2, df3]
df = pd.concat(frames)

# reset index
df = df.reset_index(drop=True)

df['POLICE'] = np.zeros(6370)

# replace police column values
df.loc[0:69,'POLICE']=np.ones(70)
df.loc[3071:3180,'POLICE']=np.ones(110)
df.loc[5271:5490,'POLICE']=np.ones(220)

# convert NaN into 0
values=(0.0)
df = df.fillna(value=values)

在我的机器中-原始代码:

Process finished --- 2.513995409011841 seconds ---

修改后的代码:

Process finished --- 0.0069921016693115234 seconds ---

我建议采用一种效率更高的完全不同的方法。创建数据的二维列表,然后将其整体转换为数据框。

lst = []
for row in range(6370):
    lst.append([None, None, None, None])
    for col in range(4):
        if (col == 0 and row < 3070)\
                or (col == 1 and row >= 3070 and row < 1100)\
                or (col == 2 and row >= 4170)\
                or (col == 3 and row < 70)\
                or (col == 3 and row > 3070 and row <= 3180)\
                or (col == 3 and row > 5270 and row <= 5490):
            lst[row][col] = 1.0
        else:
            lst[row][col] = 0.0


df = pd.DataFrame(lst)
df.columns = ["NEVER", "OCCASIONAL", "FREQUENT", "POLICE"]
print(df)

这是输出: