将不使用特定机器的惩罚成本引入 ORTools Job Shop 问题
Introducing penalty cost for not using a certain machine to ORTools Job Shop Problem
我有一个稍微更新的作业车间问题代码,我在其中添加了截止日期和 idle_times(希望它们得到正确实施)感谢此页面的优秀用户的帮助。现在我希望进一步更新代码并添加另一个功能。假设打开一台机器并给它一份工作的成本很高,所以我需要引入惩罚成本,以便求解器尝试使用该机器而不会在订单之间有停顿时间或空闲时间,因为它会花费很多再次打开那台机器。或者至少尽量少有空闲时间。
有什么想法可以实现这样的功能吗?我正在考虑将它添加为软约束或硬约束,但它只需要在某些机器上。假设一个烤箱需要时间和精力才能再次打开它。
我的代码:
import collections
# Import Python wrapper for or-tools CP-SAT solver.
from ortools.sat.python import cp_model
def MinimalJobshopSat():
"""Minimal jobshop problem."""
# Create the model.
model = cp_model.CpModel()
jobs_data = [ # task = (machine_id, processing_time, deadlines, idle_times).
[(0, 3, 10,1), (1, 2, 10,0), (2, 2, 10,0)], # Job0
[(0, 2, 15,1), (2, 1, 15,0), (1, 4, 15,1)], # Job1
[(1, 4, 15,0), (2, 3, 15,1)] # Job2
]
#counts the number of machines (3 in this case)
machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# Named tuple to store information about created variables.
task_type = collections.namedtuple('task_type', 'start end deadline interval')
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple('assigned_task_type',
'start job index duration')
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
duration = task[1]
deadline = task[2]
idle_time = task[3]
suffix = '_%i_%i' % (job_id, task_id)
start_var = model.NewIntVar(0, horizon, 'start' + suffix)
end_var = model.NewIntVar(0, deadline, 'end' + suffix)
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval' + suffix)
deadline_var = model.NewIntVar(deadline, deadline,
'deadline' + suffix)
all_tasks[job_id, task_id] = task_type(
start=start_var, end=end_var, deadline=deadline_var, interval=interval_var)
machine_to_intervals[machine].append(interval_var)
# Create and add disjunctive constraints.
for machine in all_machines:
model.AddNoOverlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id +
1].start >= all_tasks[job_id, task_id].end + idle_time)
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id].end <= all_tasks[job_id, task_id].deadline)
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(obj_var, [
all_tasks[job_id, len(job) - 1].end
for job_id, job in enumerate(jobs_data)
])
model.Minimize(obj_var)
# Solve model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(
start=solver.Value(all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1]))
# Create per machine output lines.
output = ''
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = 'Machine ' + str(machine) + ': '
sol_line = ' '
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_%i' % (assigned_task.job, assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks += '%-10s' % name
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = '[%i,%i]' % (start, start + duration)
# Add spaces to output to align columns.
sol_line += '%-10s' % sol_tmp
sol_line += '\n'
sol_line_tasks += '\n'
output += sol_line_tasks
output += sol_line
# Finally print the solution found.
print('Optimal Schedule Length: %i' % solver.ObjectiveValue())
print(output)
MinimalJobshopSat()
看看这个example
这将创建一组文字,一个任务对应每个可能的直接后继者。
现在你可以使用这个文字来创建惩罚
# literal is true if task_b is a direct successor of task_b
penalty = model.NewBoolVar('penalty')
model.Add(task_b_start > task_a_end).OnlyEnforceIf([literal, penalty])
model.Add(task_b_start == task_a_end).OnlyEnforceIf([literal, penalty.Not()])
# objective
model.Minimize(sum(penalties))
我有一个稍微更新的作业车间问题代码,我在其中添加了截止日期和 idle_times(希望它们得到正确实施)感谢此页面的优秀用户的帮助。现在我希望进一步更新代码并添加另一个功能。假设打开一台机器并给它一份工作的成本很高,所以我需要引入惩罚成本,以便求解器尝试使用该机器而不会在订单之间有停顿时间或空闲时间,因为它会花费很多再次打开那台机器。或者至少尽量少有空闲时间。
有什么想法可以实现这样的功能吗?我正在考虑将它添加为软约束或硬约束,但它只需要在某些机器上。假设一个烤箱需要时间和精力才能再次打开它。
我的代码:
import collections
# Import Python wrapper for or-tools CP-SAT solver.
from ortools.sat.python import cp_model
def MinimalJobshopSat():
"""Minimal jobshop problem."""
# Create the model.
model = cp_model.CpModel()
jobs_data = [ # task = (machine_id, processing_time, deadlines, idle_times).
[(0, 3, 10,1), (1, 2, 10,0), (2, 2, 10,0)], # Job0
[(0, 2, 15,1), (2, 1, 15,0), (1, 4, 15,1)], # Job1
[(1, 4, 15,0), (2, 3, 15,1)] # Job2
]
#counts the number of machines (3 in this case)
machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# Named tuple to store information about created variables.
task_type = collections.namedtuple('task_type', 'start end deadline interval')
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple('assigned_task_type',
'start job index duration')
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
duration = task[1]
deadline = task[2]
idle_time = task[3]
suffix = '_%i_%i' % (job_id, task_id)
start_var = model.NewIntVar(0, horizon, 'start' + suffix)
end_var = model.NewIntVar(0, deadline, 'end' + suffix)
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval' + suffix)
deadline_var = model.NewIntVar(deadline, deadline,
'deadline' + suffix)
all_tasks[job_id, task_id] = task_type(
start=start_var, end=end_var, deadline=deadline_var, interval=interval_var)
machine_to_intervals[machine].append(interval_var)
# Create and add disjunctive constraints.
for machine in all_machines:
model.AddNoOverlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id +
1].start >= all_tasks[job_id, task_id].end + idle_time)
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id].end <= all_tasks[job_id, task_id].deadline)
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(obj_var, [
all_tasks[job_id, len(job) - 1].end
for job_id, job in enumerate(jobs_data)
])
model.Minimize(obj_var)
# Solve model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(
start=solver.Value(all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1]))
# Create per machine output lines.
output = ''
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = 'Machine ' + str(machine) + ': '
sol_line = ' '
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_%i' % (assigned_task.job, assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks += '%-10s' % name
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = '[%i,%i]' % (start, start + duration)
# Add spaces to output to align columns.
sol_line += '%-10s' % sol_tmp
sol_line += '\n'
sol_line_tasks += '\n'
output += sol_line_tasks
output += sol_line
# Finally print the solution found.
print('Optimal Schedule Length: %i' % solver.ObjectiveValue())
print(output)
MinimalJobshopSat()
看看这个example
这将创建一组文字,一个任务对应每个可能的直接后继者。
现在你可以使用这个文字来创建惩罚
# literal is true if task_b is a direct successor of task_b
penalty = model.NewBoolVar('penalty')
model.Add(task_b_start > task_a_end).OnlyEnforceIf([literal, penalty])
model.Add(task_b_start == task_a_end).OnlyEnforceIf([literal, penalty.Not()])
# objective
model.Minimize(sum(penalties))