如何使 locateCenterOnScreen 更准确 -PYTHON-, -WINDOWS-
how to make locateCenterOnScreen more accurate -PYTHON-, -WINDOWS-
你好,我的目标是能够让我的机器人在任何屏幕尺寸上点击我选择的东西,因为我认为这是主要问题。我试图降低置信度,但它最终只是点击了具有相同一般颜色的其他东西。我用精确的图像对其进行了测试,它点击了正确的位置,所以它不像坐标关闭或任何它只是图像识别。
这些是要经过的图像
(X1,下一课,箭头)
from pyautogui import *
import pyautogui
import time
import keyboard
import random
def NextLesson():
keepGoing = True
while keepGoing == True:
counter = 0
nl_coordinates = pyautogui.locateOnScreen('images/nextLesson.png', confidence=0.4)
print(nl_coordinates) # This will print out where it is
if nl_coordinates:
print(f"I can see it at {nl_coordinates}")
pyautogui.click(nl_coordinates)
keepGoing = False
else:
print("I cannot see it.")
def Arrow():
keepGoing = True
while keepGoing == True:
counter = 0
arrow_coordinates = pyautogui.locateOnScreen('images/arrow.png', confidence=0.4)
print(arrow_coordinates) # This will print out where it is
if arrow_coordinates:
print(f"I can see it at {arrow_coordinates}")
pyautogui.click(arrow_coordinates)
keepGoing = False
else:
print("I cannot see it.")
def X1():
keepGoing = True
while keepGoing == True:
counter = 0
x1_coordinates = pyautogui.locateOnScreen('images/x1.png', confidence=0.4)
print(x1_coordinates) # This will print out where it is
if x1_coordinates:
print(f"I can see it at {x1_coordinates}")
pyautogui.click(x1_coordinates)
keepGoing = False
else:
print("I cannot see it.")
while True:
counter = 0
counter2 = 0
true = True
time.sleep(2)
X1()#
time.sleep(8)
NextLesson()#
time.sleep(10)
Arrow()#
print("calibration complete ")
time.sleep(5)
cords = pyautogui.position()
while counter != 1800:
time.sleep(60)
pyautogui.click(cords) #clicking where ouse is at
print("clicked")
counter += 60
print(counter)
if counter == 1800:
time.sleep(5) #stops code for 5 secs
X1() #clicks mouse to x button
print("clicked x")
time.sleep(5) #stops code for 5 secs
NextLesson() #clicks mouse to the assignment button
print("clicked assignemnt")
time.sleep(15) #stops code for 2 secs
Arrow() #clicks mouse to the second assignment button
print("clicked 2nd assignment button ")
time.sleep(5) #waits 5secs to put cursor at position
cords = pyautogui.position() #grabs position
print("grabbed position")
我们可以使用opencv-python进行多尺度模板匹配。这个想法是缩放模板图像并尝试在屏幕截图中找到调整大小的模板。下面的代码(改编自 here)在 [0.25,2] 范围内循环 50 个缩放参数并选择提供最佳匹配的那个。您可能希望降低缩放参数的范围或数量以提高效率。最好保存正确的缩放参数并将其重复用于多个图像。
import cv2
import pyscreeze
import numpy as np
import imutils
import pyautogui
def template_match_with_scaling(image,gs=True,confidence=0.8):
"""
Locate an image and return a pyscreeze box surrounding it.
Template matching is done by default in grayscale (gs=True)
Detect image if normalized correlation coefficient is > confidence (0.8 is default)
"""
templateim = pyscreeze._load_cv2(image,grayscale=gs) # template image
(tH, tW) = templateim.shape[:2]
screenim_color = pyautogui.screenshot() # screenshot of image
screenim_color = cv2.cvtColor(np.array(screenim_color),cv2.COLOR_RGB2BGR)
if gs is True:
screenim = cv2.cvtColor(np.array(screenim_color),cv2.COLOR_BGR2GRAY)
else:
screenim = screenim_color
#try different scaling parameters and see which one matches best
found = None #bookeeping variable for the maximum correlation coefficient, position and scale
scalingrange = np.linspace(0.25,2,num=50)
for scale in scalingrange:
resizedtemplate = imutils.resize(templateim, width = int(templateim.shape[1]*scale) ) # resizing with imutils maintains the aspect ratio
r = float(resizedtemplate.shape[1])/templateim.shape[1] # recompute scaling factor
result = cv2.matchTemplate(screenim, resizedtemplate, cv2.TM_CCOEFF_NORMED) # template matching using the correlation coefficient
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result) #returns a 4-tuple which includes the minimum correlation value, the maximum correlation value, the (x, y)-coordinate of the minimum value, and the (x, y)-coordinate of the maximum value
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
(maxVal, maxLoc, r) = found
if maxVal > confidence:
box = pyscreeze.Box(int(maxLoc[0]), int(maxLoc[1]), int(tW*r), int(tH*r) )
return box
else:
return None
def locate_center_with_scaling(image,gs=True):
loc = template_match_with_scaling(image,gs=gs)
if loc:
return pyautogui.center(loc)
else:
raise Exception("Image not found")
#sample usage
coords = locate_center_with_scaling('images/arrow.png')
我找到的答案是拍摄一张我需要的更准确的照片,比如尝试尽可能多地去除灰度 = true 背景并增加信心
你好,我的目标是能够让我的机器人在任何屏幕尺寸上点击我选择的东西,因为我认为这是主要问题。我试图降低置信度,但它最终只是点击了具有相同一般颜色的其他东西。我用精确的图像对其进行了测试,它点击了正确的位置,所以它不像坐标关闭或任何它只是图像识别。
这些是要经过的图像
(X1,下一课,箭头)
from pyautogui import *
import pyautogui
import time
import keyboard
import random
def NextLesson():
keepGoing = True
while keepGoing == True:
counter = 0
nl_coordinates = pyautogui.locateOnScreen('images/nextLesson.png', confidence=0.4)
print(nl_coordinates) # This will print out where it is
if nl_coordinates:
print(f"I can see it at {nl_coordinates}")
pyautogui.click(nl_coordinates)
keepGoing = False
else:
print("I cannot see it.")
def Arrow():
keepGoing = True
while keepGoing == True:
counter = 0
arrow_coordinates = pyautogui.locateOnScreen('images/arrow.png', confidence=0.4)
print(arrow_coordinates) # This will print out where it is
if arrow_coordinates:
print(f"I can see it at {arrow_coordinates}")
pyautogui.click(arrow_coordinates)
keepGoing = False
else:
print("I cannot see it.")
def X1():
keepGoing = True
while keepGoing == True:
counter = 0
x1_coordinates = pyautogui.locateOnScreen('images/x1.png', confidence=0.4)
print(x1_coordinates) # This will print out where it is
if x1_coordinates:
print(f"I can see it at {x1_coordinates}")
pyautogui.click(x1_coordinates)
keepGoing = False
else:
print("I cannot see it.")
while True:
counter = 0
counter2 = 0
true = True
time.sleep(2)
X1()#
time.sleep(8)
NextLesson()#
time.sleep(10)
Arrow()#
print("calibration complete ")
time.sleep(5)
cords = pyautogui.position()
while counter != 1800:
time.sleep(60)
pyautogui.click(cords) #clicking where ouse is at
print("clicked")
counter += 60
print(counter)
if counter == 1800:
time.sleep(5) #stops code for 5 secs
X1() #clicks mouse to x button
print("clicked x")
time.sleep(5) #stops code for 5 secs
NextLesson() #clicks mouse to the assignment button
print("clicked assignemnt")
time.sleep(15) #stops code for 2 secs
Arrow() #clicks mouse to the second assignment button
print("clicked 2nd assignment button ")
time.sleep(5) #waits 5secs to put cursor at position
cords = pyautogui.position() #grabs position
print("grabbed position")
我们可以使用opencv-python进行多尺度模板匹配。这个想法是缩放模板图像并尝试在屏幕截图中找到调整大小的模板。下面的代码(改编自 here)在 [0.25,2] 范围内循环 50 个缩放参数并选择提供最佳匹配的那个。您可能希望降低缩放参数的范围或数量以提高效率。最好保存正确的缩放参数并将其重复用于多个图像。
import cv2
import pyscreeze
import numpy as np
import imutils
import pyautogui
def template_match_with_scaling(image,gs=True,confidence=0.8):
"""
Locate an image and return a pyscreeze box surrounding it.
Template matching is done by default in grayscale (gs=True)
Detect image if normalized correlation coefficient is > confidence (0.8 is default)
"""
templateim = pyscreeze._load_cv2(image,grayscale=gs) # template image
(tH, tW) = templateim.shape[:2]
screenim_color = pyautogui.screenshot() # screenshot of image
screenim_color = cv2.cvtColor(np.array(screenim_color),cv2.COLOR_RGB2BGR)
if gs is True:
screenim = cv2.cvtColor(np.array(screenim_color),cv2.COLOR_BGR2GRAY)
else:
screenim = screenim_color
#try different scaling parameters and see which one matches best
found = None #bookeeping variable for the maximum correlation coefficient, position and scale
scalingrange = np.linspace(0.25,2,num=50)
for scale in scalingrange:
resizedtemplate = imutils.resize(templateim, width = int(templateim.shape[1]*scale) ) # resizing with imutils maintains the aspect ratio
r = float(resizedtemplate.shape[1])/templateim.shape[1] # recompute scaling factor
result = cv2.matchTemplate(screenim, resizedtemplate, cv2.TM_CCOEFF_NORMED) # template matching using the correlation coefficient
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result) #returns a 4-tuple which includes the minimum correlation value, the maximum correlation value, the (x, y)-coordinate of the minimum value, and the (x, y)-coordinate of the maximum value
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
(maxVal, maxLoc, r) = found
if maxVal > confidence:
box = pyscreeze.Box(int(maxLoc[0]), int(maxLoc[1]), int(tW*r), int(tH*r) )
return box
else:
return None
def locate_center_with_scaling(image,gs=True):
loc = template_match_with_scaling(image,gs=gs)
if loc:
return pyautogui.center(loc)
else:
raise Exception("Image not found")
#sample usage
coords = locate_center_with_scaling('images/arrow.png')
我找到的答案是拍摄一张我需要的更准确的照片,比如尝试尽可能多地去除灰度 = true 背景并增加信心