从预训练模型中删除层的问题
Issue in removing layer from a pretrained model
我有以下代码,我需要删除模型的一些层并进行预测。但目前我正在检索错误。
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
from keras.models import Model
from tensorflow.python.keras.optimizers import SGD
base_model = ResNet50(include_top=False, weights='imagenet')
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
#model = Model(inputs=base_model.input, outputs=predictions)
#Compiling the model
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics =
['accuracy'])
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
#decode the results into a list of tuples (class, description, probability)
#(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
错误
File "C:/Users/learn/remove_layer.py", line 9, in <module>
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
AttributeError: 'Tensor' object has no attribute '_keras_shape'
由于我对 Keras 的初学者了解,我理解的是形状问题。由于它是一个 resnet 模型,如果我从一个合并层中删除一个层到另一个合并层,因为合并层没有维度问题,我该如何实现?
您实际上需要可视化您所做的事情,所以让我们对 ResNet50 模型的最后几层做一些总结:
base_model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_out (Activation) (None, None, None, 2 0 conv5_block3_add[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
_____________________________
移除最后一层后的模型
model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
keras 输出中的 Reset50 是最后一个 Conv2D 块之后的所有特征图,它不关心模型的分类部分,你实际上所做的是你只是在最后一个添加块之后删除了最后一个激活层
所以你需要检查更多你想删除哪个块层并为分类部分添加展平和全连接层
另外如 Dr.Snoopy 所述,不要在 keras 和 tensorflow.keras
之间混合导入
# this part
from tensorflow.keras.models import Model
我有以下代码,我需要删除模型的一些层并进行预测。但目前我正在检索错误。
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
from keras.models import Model
from tensorflow.python.keras.optimizers import SGD
base_model = ResNet50(include_top=False, weights='imagenet')
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
#model = Model(inputs=base_model.input, outputs=predictions)
#Compiling the model
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics =
['accuracy'])
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
#decode the results into a list of tuples (class, description, probability)
#(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
错误
File "C:/Users/learn/remove_layer.py", line 9, in <module>
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
AttributeError: 'Tensor' object has no attribute '_keras_shape'
由于我对 Keras 的初学者了解,我理解的是形状问题。由于它是一个 resnet 模型,如果我从一个合并层中删除一个层到另一个合并层,因为合并层没有维度问题,我该如何实现?
您实际上需要可视化您所做的事情,所以让我们对 ResNet50 模型的最后几层做一些总结:
base_model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_out (Activation) (None, None, None, 2 0 conv5_block3_add[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
_____________________________
移除最后一层后的模型
model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
keras 输出中的 Reset50 是最后一个 Conv2D 块之后的所有特征图,它不关心模型的分类部分,你实际上所做的是你只是在最后一个添加块之后删除了最后一个激活层
所以你需要检查更多你想删除哪个块层并为分类部分添加展平和全连接层
另外如 Dr.Snoopy 所述,不要在 keras 和 tensorflow.keras
之间混合导入# this part
from tensorflow.keras.models import Model