在 Python 中的指定时间间隔内分组并重新采样
Group by and resample in specified time interval in Python
如何使用正向填充 ffill
和向后填充 bfill
对每个 id
(使用 groupby('id')
) 对于时间间隔 2017-01-01 00:00:00
和 2017-01-05 00:00:00
,即第一个时间戳是 2017-01-01 00:00:00
,最后一个时间戳是 2017-01-05 00:00:00
?
id timestamp data
1 1 2017-01-02 13:14:53.040 10.0
2 1 2017-01-02 16:04:43.240 11.0
...
4 2 2017-01-02 15:22:06.540 1.0
5 2 2017-01-03 13:55:34.240 2.0
...
我试过了:
pd.DataFrame(df.set_index('timestamp').groupby('id', sort=True)['data'].resample('1min').ffill().bfill())
但这并没有指定2017-01-01 00:00:00
-2017-01-05 00:00:00
.
所需的时间间隔
然后我尝试了:
r = pd.to_datetime(pd.date_range(start='2017-01-01 00:00:00', end='2017-01-05 00:00:00', freq='1min'))
pd.DataFrame(df.reset_index().set_index('timestamp').groupby('id', sort=True).reindex(r)['data'].resample('1min').ffill().bfill())
并发现错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-202-344bb3281e2e> in <module>
5 r = pd.to_datetime(pd.date_range(start='2017-01-01 00:00:00', end='2017-01-05 00:00:00', freq='1min'))
6
----> 7 pd.DataFrame(df.reset_index().set_index('timestamp').groupby('id', sort=True).reindex(r)['data'].resample('1min').ffill().bfill())
8
~\AppData\Roaming\Python\Python38\site-packages\pandas\core\groupby\groupby.py in __getattr__(self, attr)
701 return self[attr]
702
--> 703 raise AttributeError(
704 f"'{type(self).__name__}' object has no attribute '{attr}'"
705 )
AttributeError: 'DataFrameGroupBy' object has no attribute 'reindex'
更新:
示例数据df_sub_data
:
{'timestamp': {781681: Timestamp('2021-03-11 17:17:19.920000'),
1036818: Timestamp('2021-03-11 17:59:56.040000'),
677981: Timestamp('2021-03-11 19:25:59.090000')},
'data': {781681: 25.0, 1036818: 24.0, 677981: 23.0},
'id': {781681: 100, 1036818: 100, 677981: 100}}
我试过了:
start = datetime.datetime.now() - pd.to_timedelta("7day")
end = datetime.datetime.now()
def f(x):
r = pd.date_range(start=start, end=end, freq='1min')
return x.reindex(r, method='ffill').bfill()
df_sub = (df_sub_data.reset_index()
.set_index('timestamp')
.groupby(['index','id'], sort=False)['data']
.apply(f)
.reset_index(level=0, drop=True)
.rename_axis(['id','timestamp'])
.reset_index()
)
它返回了一个形状为 (30243, 3)
的数据框
我想知道,我不应该期望形状是 (10080, 3)
,它由 7 x 24 x 60
7 天内的分钟数给出吗?示例数据由一个id == 100
.
的数据组成
您可以通过 date_range
将自定义 lambda 函数与 reindex
一起使用:
def f(x):
r = pd.date_range(start=start, end=end, freq='1min')
return x.reindex(r, method='ffill').bfill()
df_sub = (df_sub_data
.set_index('timestamp')
.groupby('id', sort=False)['data']
.apply(f)
.rename_axis(['id','timestamp'])
.reset_index()
)
print (df_sub)
id timestamp data
0 100 2021-03-08 09:37:13.096029 25.0
1 100 2021-03-08 09:38:13.096029 25.0
2 100 2021-03-08 09:39:13.096029 25.0
3 100 2021-03-08 09:40:13.096029 25.0
4 100 2021-03-08 09:41:13.096029 25.0
... ... ...
10076 100 2021-03-15 09:33:13.096029 23.0
10077 100 2021-03-15 09:34:13.096029 23.0
10078 100 2021-03-15 09:35:13.096029 23.0
10079 100 2021-03-15 09:36:13.096029 23.0
10080 100 2021-03-15 09:37:13.096029 23.0
[10081 rows x 3 columns]
如何使用正向填充 ffill
和向后填充 bfill
对每个 id
(使用 groupby('id')
) 对于时间间隔 2017-01-01 00:00:00
和 2017-01-05 00:00:00
,即第一个时间戳是 2017-01-01 00:00:00
,最后一个时间戳是 2017-01-05 00:00:00
?
id timestamp data
1 1 2017-01-02 13:14:53.040 10.0
2 1 2017-01-02 16:04:43.240 11.0
...
4 2 2017-01-02 15:22:06.540 1.0
5 2 2017-01-03 13:55:34.240 2.0
...
我试过了:
pd.DataFrame(df.set_index('timestamp').groupby('id', sort=True)['data'].resample('1min').ffill().bfill())
但这并没有指定2017-01-01 00:00:00
-2017-01-05 00:00:00
.
然后我尝试了:
r = pd.to_datetime(pd.date_range(start='2017-01-01 00:00:00', end='2017-01-05 00:00:00', freq='1min'))
pd.DataFrame(df.reset_index().set_index('timestamp').groupby('id', sort=True).reindex(r)['data'].resample('1min').ffill().bfill())
并发现错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-202-344bb3281e2e> in <module>
5 r = pd.to_datetime(pd.date_range(start='2017-01-01 00:00:00', end='2017-01-05 00:00:00', freq='1min'))
6
----> 7 pd.DataFrame(df.reset_index().set_index('timestamp').groupby('id', sort=True).reindex(r)['data'].resample('1min').ffill().bfill())
8
~\AppData\Roaming\Python\Python38\site-packages\pandas\core\groupby\groupby.py in __getattr__(self, attr)
701 return self[attr]
702
--> 703 raise AttributeError(
704 f"'{type(self).__name__}' object has no attribute '{attr}'"
705 )
AttributeError: 'DataFrameGroupBy' object has no attribute 'reindex'
更新:
示例数据df_sub_data
:
{'timestamp': {781681: Timestamp('2021-03-11 17:17:19.920000'),
1036818: Timestamp('2021-03-11 17:59:56.040000'),
677981: Timestamp('2021-03-11 19:25:59.090000')},
'data': {781681: 25.0, 1036818: 24.0, 677981: 23.0},
'id': {781681: 100, 1036818: 100, 677981: 100}}
我试过了:
start = datetime.datetime.now() - pd.to_timedelta("7day")
end = datetime.datetime.now()
def f(x):
r = pd.date_range(start=start, end=end, freq='1min')
return x.reindex(r, method='ffill').bfill()
df_sub = (df_sub_data.reset_index()
.set_index('timestamp')
.groupby(['index','id'], sort=False)['data']
.apply(f)
.reset_index(level=0, drop=True)
.rename_axis(['id','timestamp'])
.reset_index()
)
它返回了一个形状为 (30243, 3)
我想知道,我不应该期望形状是 (10080, 3)
,它由 7 x 24 x 60
7 天内的分钟数给出吗?示例数据由一个id == 100
.
您可以通过 date_range
将自定义 lambda 函数与 reindex
一起使用:
def f(x):
r = pd.date_range(start=start, end=end, freq='1min')
return x.reindex(r, method='ffill').bfill()
df_sub = (df_sub_data
.set_index('timestamp')
.groupby('id', sort=False)['data']
.apply(f)
.rename_axis(['id','timestamp'])
.reset_index()
)
print (df_sub)
id timestamp data
0 100 2021-03-08 09:37:13.096029 25.0
1 100 2021-03-08 09:38:13.096029 25.0
2 100 2021-03-08 09:39:13.096029 25.0
3 100 2021-03-08 09:40:13.096029 25.0
4 100 2021-03-08 09:41:13.096029 25.0
... ... ...
10076 100 2021-03-15 09:33:13.096029 23.0
10077 100 2021-03-15 09:34:13.096029 23.0
10078 100 2021-03-15 09:35:13.096029 23.0
10079 100 2021-03-15 09:36:13.096029 23.0
10080 100 2021-03-15 09:37:13.096029 23.0
[10081 rows x 3 columns]