如何在keras中找到LSTM第一层的正确输入大小

How can I find the correct input size of the LSTM first layer in keras

我正在尝试为 keras 中的第一层 LSTM 设置正确的输入形状,但我很难理解什么是正确的 input_shape

对于 print(X_train.shape) 我得到 (9600, 64, 64, 1)

对于 print(y_train.shape) 我得到 (9600, 15)

#Initializing the classifier Network
classifier = Sequential()

#Adding the input LSTM network layer
classifier.add(LSTM(128, input_shape=(64,1), return_sequences=True))
classifier.add(Dropout(0.2))

如果您需要更多信息,请随时询问

此数据无法传递到需要 3D 数据的 LSTM 层。也许在添加时间步长维度后尝试 tf.keras.layers.ConvLSTM2D

import tensorflow as tf

images = tf.random.uniform((10, 1, 224, 224, 1))

classifier = tf.keras.Sequential([
    tf.keras.layers.ConvLSTM2D(8, 
                               kernel_size=(3, 3),
                               input_shape=(1, 224, 224, 1), 
                               return_sequences=True)
])

classifier(images)
   [[[[-3.53521258e-02, -2.02189311e-02, -2.47801729e-02, ...,
           -2.34759413e-03,  4.60262299e-02,  4.76470888e-02],
          [ 1.04620471e-03, -9.23185516e-03,  1.37878451e-02, ...,
           -4.88127321e-02,  4.20494527e-02,  6.06664363e-03],
          [ 1.26057174e-02,  1.07498122e-02, -1.85700115e-02, ...,
           -1.49483923e-02,  1.21065099e-02,  1.71790868e-02]...,