从 python 中的列表中提取数据

Extract data from a list in python

我有以下列表:

[N               12.000000
 mean             2.011608
 median           2.021611
 std              0.572034
 relative std     0.284350
 dtype: float64,
 N               12.000000
 mean             2.011608
 median           2.021611
 std              0.571815
 relative std     0.284262
 dtype: float64,
 N               12.000000
 mean             2.011608
 median           2.021611
 std              0.572101
 relative std     0.284412
 dtype: float64,
 N               12.000000
 mean             2.011608
 median           2.021611
 std              0.572115
 relative std     0.284440
 dtype: float64,
 N               12.000000
 mean             2.011608
 median           2.021611
 std              0.571872
 relative std     0.284313
 dtype: float64]

我想从具有最小相对标准值的列表中提取数据(N、平均值、标准值、相对标准值)。上面列表的输出应该是这样的:

 N               12.000000
 mean             2.011608
 median           2.021611
 std              0.571815
 relative std     0.284262
 dtype: float64

到目前为止我尝试了什么?

min(list)

但是抛出如下错误ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

min 与 lambda 函数一起用于标签 stdSeries 的 select 值:

s1 = pd.Series([0,1,2], index=['std','min','max'])
s2 = pd.Series([4,1,2], index=['std','min','max'])
s3 = pd.Series([0.8,1,2], index=['std','min','max'])

L = [s1, s2, s3]

s = min(L, key=lambda x:x.loc['std'])
print (s)
std    0
min    1
max    2
dtype: int64

测试所有最小值:

print ([x.loc['std'] for x in L])
[0, 4, 0.8]

并用于索引np.argmin:

import numpy as np
print (np.argmin([x.loc['std'] for x in L]))
0