Python - 附加到腌制列表
Python - appending to a pickled list
我正在努力将列表附加到腌制文件中。
这是代码:
#saving high scores to a pickled file
import pickle
first_name = input("Please enter your name:")
score = input("Please enter your score:")
scores = []
high_scores = first_name, score
scores.append(high_scores)
file = open("high_scores.dat", "ab")
pickle.dump(scores, file)
file.close()
file = open("high_scores.dat", "rb")
scores = pickle.load(file)
print(scores)
file.close()
我第一次 运行 代码时,它会打印姓名和分数。
我第二次 运行 代码,它打印了 2 个名字和 2 个分数。
第三次我 运行 代码,它打印了名字和分数,但是它用我输入的第三个名字和分数覆盖了第二个名字和分数。我只是想让它继续添加名字和分数。我不明白为什么要保存第一个名字并覆盖第二个名字。
您需要先从您的数据库(即您的 pickle 文件)中提取列表,然后再附加到它。
import pickle
import os
high_scores_filename = 'high_scores.dat'
scores = []
# first time you run this, "high_scores.dat" won't exist
# so we need to check for its existence before we load
# our "database"
if os.path.exists(high_scores_filename):
# "with" statements are very handy for opening files.
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
# Notice that there's no "rfp.close()"
# ... the "with" clause calls close() automatically!
first_name = input("Please enter your name:")
score = input("Please enter your score:")
high_scores = first_name, score
scores.append(high_scores)
# Now we "sync" our database
with open(high_scores_filename,'wb') as wfp:
pickle.dump(scores, wfp)
# Re-load our database
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
print(scores)
如果要写入和读取 pickled 文件,可以为列表中的每个条目多次调用转储。每次转储时,都会将分数附加到腌制文件中,每次加载时都会读取下一个分数。
>>> import pickle as dill
>>>
>>> scores = [('joe', 1), ('bill', 2), ('betty', 100)]
>>> nscores = len(scores)
>>>
>>> with open('high.pkl', 'ab') as f:
… _ = [dill.dump(score, f) for score in scores]
...
>>>
>>> with open('high.pkl', 'ab') as f:
... dill.dump(('mary', 1000), f)
...
>>> # we added a score on the fly, so load nscores+1
>>> with open('high.pkl', 'rb') as f:
... _scores = [dill.load(f) for i in range(nscores + 1)]
...
>>> _scores
[('joe', 1), ('bill', 2), ('betty', 100), ('mary', 1000)]
>>>
您的代码失败的最可能原因是您将原始的 scores
替换为未经处理的分数列表。因此,如果添加了任何新乐谱,您会把它们留在记忆中。
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
>>> f = open('high.pkl', 'wb')
>>> dill.dump(scores, f)
>>> f.close()
>>>
>>> scores.append(('mary',1000))
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100), ('mary', 1000)]
>>>
>>> f = open('high.pkl', 'rb')
>>> _scores = dill.load(f)
>>> f.close()
>>> _scores
[('joe', 1), ('bill', 2), ('betty', 100)]
>>> blow away the old scores list, by pointing to _scores
>>> scores = _scores
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
所以它更像是 scores
的 python 名称引用问题,而不是 pickle
问题。 Pickle
只是实例化一个新列表并调用它 scores
(在你的情况下),然后它垃圾收集之前指向 scores
的任何东西。
>>> scores = 1
>>> f = open('high.pkl', 'rb')
>>> scores = dill.load(f)
>>> f.close()
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
实际上并没有回答这个问题,但是如果有人想在泡菜中一次添加一个项目,您可以通过...
import pickle
import os
high_scores_filename = '/home/ubuntu-dev/Desktop/delete/high_scores.dat'
scores = []
# first time you run this, "high_scores.dat" won't exist
# so we need to check for its existence before we load
# our "database"
if os.path.exists(high_scores_filename):
# "with" statements are very handy for opening files.
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
# Notice that there's no "rfp.close()"
# ... the "with" clause calls close() automatically!
names = ["mike", "bob", "joe"]
for name in names:
high_score = name
print(name)
scores.append(high_score)
# Now we "sync" our database
with open(high_scores_filename,'wb') as wfp:
pickle.dump(scores, wfp)
# Re-load our database
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
print(scores)
不要使用 pickle 而是使用 h5py 这也能解决你的问题
with h5py.File('.\PreprocessedData.h5', 'a') as hf:
hf["X_train"].resize((hf["X_train"].shape[0] + X_train_data.shape[0]), axis = 0)
hf["X_train"][-X_train_data.shape[0]:] = X_train_data
hf["X_test"].resize((hf["X_test"].shape[0] + X_test_data.shape[0]), axis = 0)
hf["X_test"][-X_test_data.shape[0]:] = X_test_data
hf["Y_train"].resize((hf["Y_train"].shape[0] + Y_train_data.shape[0]), axis = 0)
hf["Y_train"][-Y_train_data.shape[0]:] = Y_train_data
hf["Y_test"].resize((hf["Y_test"].shape[0] + Y_test_data.shape[0]), axis = 0)
hf["Y_test"][-Y_test_data.shape[0]:] = Y_test_data
我正在努力将列表附加到腌制文件中。 这是代码:
#saving high scores to a pickled file
import pickle
first_name = input("Please enter your name:")
score = input("Please enter your score:")
scores = []
high_scores = first_name, score
scores.append(high_scores)
file = open("high_scores.dat", "ab")
pickle.dump(scores, file)
file.close()
file = open("high_scores.dat", "rb")
scores = pickle.load(file)
print(scores)
file.close()
我第一次 运行 代码时,它会打印姓名和分数。
我第二次 运行 代码,它打印了 2 个名字和 2 个分数。
第三次我 运行 代码,它打印了名字和分数,但是它用我输入的第三个名字和分数覆盖了第二个名字和分数。我只是想让它继续添加名字和分数。我不明白为什么要保存第一个名字并覆盖第二个名字。
您需要先从您的数据库(即您的 pickle 文件)中提取列表,然后再附加到它。
import pickle
import os
high_scores_filename = 'high_scores.dat'
scores = []
# first time you run this, "high_scores.dat" won't exist
# so we need to check for its existence before we load
# our "database"
if os.path.exists(high_scores_filename):
# "with" statements are very handy for opening files.
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
# Notice that there's no "rfp.close()"
# ... the "with" clause calls close() automatically!
first_name = input("Please enter your name:")
score = input("Please enter your score:")
high_scores = first_name, score
scores.append(high_scores)
# Now we "sync" our database
with open(high_scores_filename,'wb') as wfp:
pickle.dump(scores, wfp)
# Re-load our database
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
print(scores)
如果要写入和读取 pickled 文件,可以为列表中的每个条目多次调用转储。每次转储时,都会将分数附加到腌制文件中,每次加载时都会读取下一个分数。
>>> import pickle as dill
>>>
>>> scores = [('joe', 1), ('bill', 2), ('betty', 100)]
>>> nscores = len(scores)
>>>
>>> with open('high.pkl', 'ab') as f:
… _ = [dill.dump(score, f) for score in scores]
...
>>>
>>> with open('high.pkl', 'ab') as f:
... dill.dump(('mary', 1000), f)
...
>>> # we added a score on the fly, so load nscores+1
>>> with open('high.pkl', 'rb') as f:
... _scores = [dill.load(f) for i in range(nscores + 1)]
...
>>> _scores
[('joe', 1), ('bill', 2), ('betty', 100), ('mary', 1000)]
>>>
您的代码失败的最可能原因是您将原始的 scores
替换为未经处理的分数列表。因此,如果添加了任何新乐谱,您会把它们留在记忆中。
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
>>> f = open('high.pkl', 'wb')
>>> dill.dump(scores, f)
>>> f.close()
>>>
>>> scores.append(('mary',1000))
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100), ('mary', 1000)]
>>>
>>> f = open('high.pkl', 'rb')
>>> _scores = dill.load(f)
>>> f.close()
>>> _scores
[('joe', 1), ('bill', 2), ('betty', 100)]
>>> blow away the old scores list, by pointing to _scores
>>> scores = _scores
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
所以它更像是 scores
的 python 名称引用问题,而不是 pickle
问题。 Pickle
只是实例化一个新列表并调用它 scores
(在你的情况下),然后它垃圾收集之前指向 scores
的任何东西。
>>> scores = 1
>>> f = open('high.pkl', 'rb')
>>> scores = dill.load(f)
>>> f.close()
>>> scores
[('joe', 1), ('bill', 2), ('betty', 100)]
实际上并没有回答这个问题,但是如果有人想在泡菜中一次添加一个项目,您可以通过...
import pickle
import os
high_scores_filename = '/home/ubuntu-dev/Desktop/delete/high_scores.dat'
scores = []
# first time you run this, "high_scores.dat" won't exist
# so we need to check for its existence before we load
# our "database"
if os.path.exists(high_scores_filename):
# "with" statements are very handy for opening files.
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
# Notice that there's no "rfp.close()"
# ... the "with" clause calls close() automatically!
names = ["mike", "bob", "joe"]
for name in names:
high_score = name
print(name)
scores.append(high_score)
# Now we "sync" our database
with open(high_scores_filename,'wb') as wfp:
pickle.dump(scores, wfp)
# Re-load our database
with open(high_scores_filename,'rb') as rfp:
scores = pickle.load(rfp)
print(scores)
不要使用 pickle 而是使用 h5py 这也能解决你的问题
with h5py.File('.\PreprocessedData.h5', 'a') as hf:
hf["X_train"].resize((hf["X_train"].shape[0] + X_train_data.shape[0]), axis = 0)
hf["X_train"][-X_train_data.shape[0]:] = X_train_data
hf["X_test"].resize((hf["X_test"].shape[0] + X_test_data.shape[0]), axis = 0)
hf["X_test"][-X_test_data.shape[0]:] = X_test_data
hf["Y_train"].resize((hf["Y_train"].shape[0] + Y_train_data.shape[0]), axis = 0)
hf["Y_train"][-Y_train_data.shape[0]:] = Y_train_data
hf["Y_test"].resize((hf["Y_test"].shape[0] + Y_test_data.shape[0]), axis = 0)
hf["Y_test"][-Y_test_data.shape[0]:] = Y_test_data