线性回归 - 图上的方程式 - Python
Linear regression - equation on the plot - Python
嘿,我想做线性回归并创建一个图,其上也将是我的模型的方程。我有以下代码:
from sklearn.linear_model import LinearRegression
X = np.array((1,2, 3, 4))
Y = np.array((3, 1, 4, 5))
X = X.reshape((-1, 1))
model = LinearRegression().fit(X, Y)
plt.scatter(X, Y, color='g')
plt.plot(X, model.predict(X),color='k')
print(model.coef_[0], model.intercept_)
如何在我的绘图上自动写方程?
Matplotlib has extensive text support, including support for mathematical expressions, truetype support for raster and vector outputs, newline separated text with arbitrary rotations, and unicode support.
来自official documentation以下命令用于在pyplot界面和面向对象API中创建文本:
pyplot API
OO API
description
text
text
Add text at an arbitrary location of the Axes.
annotate
annotate
Add an annotation, with an optional arrow, at an arbitrary location of the Axes.
xlabel
set_xlabel
Add a label to the Axes's x-axis.
ylabel
set_ylabel
Add a label to the Axes's y-axis.
title
set_title
Add a title to the Axes.
figtext
text
Add text at an arbitrary location of the Figure.
suptitle
suptitle
Add a title to the Figure.
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
X = np.array((1,2, 3, 4))
Y = np.array((3, 1, 4, 5))
X = X.reshape((-1, 1))
model = LinearRegression().fit(X, Y)
fig = plt.figure()
ax = fig.add_subplot()
plt.scatter(X, Y, color='g')
plt.plot(X, model.predict(X),color='k')
ax.text(1, 4, r'LR equation: $Y = a + bX$', fontsize=10)
print(model.coef_[0], model.intercept_)
剧情:
嘿,我想做线性回归并创建一个图,其上也将是我的模型的方程。我有以下代码:
from sklearn.linear_model import LinearRegression
X = np.array((1,2, 3, 4))
Y = np.array((3, 1, 4, 5))
X = X.reshape((-1, 1))
model = LinearRegression().fit(X, Y)
plt.scatter(X, Y, color='g')
plt.plot(X, model.predict(X),color='k')
print(model.coef_[0], model.intercept_)
如何在我的绘图上自动写方程?
Matplotlib has extensive text support, including support for mathematical expressions, truetype support for raster and vector outputs, newline separated text with arbitrary rotations, and unicode support.
来自official documentation以下命令用于在pyplot界面和面向对象API中创建文本:
pyplot API | OO API | description |
---|---|---|
text | text | Add text at an arbitrary location of the Axes. |
annotate | annotate | Add an annotation, with an optional arrow, at an arbitrary location of the Axes. |
xlabel | set_xlabel | Add a label to the Axes's x-axis. |
ylabel | set_ylabel | Add a label to the Axes's y-axis. |
title | set_title | Add a title to the Axes. |
figtext | text | Add text at an arbitrary location of the Figure. |
suptitle | suptitle | Add a title to the Figure. |
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
X = np.array((1,2, 3, 4))
Y = np.array((3, 1, 4, 5))
X = X.reshape((-1, 1))
model = LinearRegression().fit(X, Y)
fig = plt.figure()
ax = fig.add_subplot()
plt.scatter(X, Y, color='g')
plt.plot(X, model.predict(X),color='k')
ax.text(1, 4, r'LR equation: $Y = a + bX$', fontsize=10)
print(model.coef_[0], model.intercept_)
剧情: