Combine: rowwise(), mutate(), across(),用于多个函数

Combine: rowwise(), mutate(), across(), for multiple functions

这与此 有某种关系: 原则上,我试图理解 rowwise 如何与 mutate 跨多个列应用多个函数,如 (mean()sum()min() 等 ..)工作。

我了解到 across 做这项工作而不是 c_across。 我了解到函数 mean() 与函数 min() 的不同之处在于 mean() 不适用于数据帧,我们需要将其更改为可以使用 unlist 完成的向量或 as.matrix -> 从 Ronak Shah

那里学到

现在以我的实际情况为例:我能够完成这项任务,但我丢失了一列 d。如何避免此设置中 d 列的松动。

我的 df:

df <- structure(list(a = 1:5, b = 6:10, c = 11:15, d = c("a", "b", 
"c", "d", "e"), e = 1:5), row.names = c(NA, -5L), class = c("tbl_df", 
"tbl", "data.frame"))

无效:

df %>% 
  rowwise() %>% 
  mutate(across(a:e), 
         avg = mean(unlist(cur_data()), na.rm = TRUE),
         min = min(unlist(cur_data()), na.rm = TRUE), 
         max = max(unlist(cur_data()), na.rm = TRUE)
  )

# Output:
      a     b     c d         e   avg min   max  
  <int> <int> <int> <chr> <int> <dbl> <chr> <chr>
1     1     6    11 a         1    NA 1     a    
2     2     7    12 b         2    NA 12    b    
3     3     8    13 c         3    NA 13    c    
4     4     9    14 d         4    NA 14    d    
5     5    10    15 e         5    NA 10    e 

有效,但我丢失了专栏 d:

df %>% 
  select(-d) %>% 
  rowwise() %>% 
  mutate(across(a:e), 
         avg = mean(unlist(cur_data()), na.rm = TRUE),
         min = min(unlist(cur_data()), na.rm = TRUE), 
         max = max(unlist(cur_data()), na.rm = TRUE)
  )

      a     b     c     e   avg   min   max
  <int> <int> <int> <int> <dbl> <dbl> <dbl>
1     1     6    11     1  4.75     1    11
2     2     7    12     2  5.75     2    12
3     3     8    13     3  6.75     3    13
4     4     9    14     4  7.75     4    14
5     5    10    15     5  8.75     5    15

编辑:

这里是最好的出路

df %>%
  rowwise() %>% 
  mutate(min = min(c_across(a:e & where(is.numeric)), na.rm = TRUE),
         max = max(c_across(a:e & where(is.numeric)), na.rm = TRUE), 
         avg = mean(c_across(a:e & where(is.numeric)), na.rm = TRUE)
  )

# A tibble: 5 x 8
# Rowwise: 
      a     b     c d         e   min   max   avg
  <int> <int> <int> <chr> <int> <int> <int> <dbl>
1     1     6    11 a         1     1    11  4.75
2     2     7    12 b         2     2    12  5.75
3     3     8    13 c         3     3    13  6.75
4     4     9    14 d         4     4    14  7.75
5     5    10    15 e         5     5    15  8.75

较早的回答 您的 this will work 甚至无法正常工作,如果您更改输出顺序,请参阅

df %>% 
  select(-d) %>% 
  rowwise() %>% 
  mutate(across(a:e), 
         min = min(unlist(cur_data()), na.rm = TRUE),
         max = max(unlist(cur_data()), na.rm = TRUE), 
         avg = mean(unlist(cur_data()), na.rm = TRUE)
  )

# A tibble: 5 x 7
# Rowwise: 
      a     b     c     e   min   max   avg
  <int> <int> <int> <int> <int> <int> <dbl>
1     1     6    11     1     1    11  5.17
2     2     7    12     2     2    12  6.17
3     3     8    13     3     3    13  7.17
4     4     9    14     4     4    14  8.17
5     5    10    15     5     5    15  9.17

所以建议这样做-

df %>% 
  select(-d) %>% 
  rowwise() %>% 
  mutate(min = min(c_across(a:e), na.rm = TRUE),
         max = max(c_across(a:e), na.rm = TRUE), 
         avg = mean(c_across(a:e), na.rm = TRUE)
  )

# A tibble: 5 x 7
# Rowwise: 
      a     b     c     e   min   max   avg
  <int> <int> <int> <int> <int> <int> <dbl>
1     1     6    11     1     1    11  4.75
2     2     7    12     2     2    12  5.75
3     3     8    13     3     3    13  6.75
4     4     9    14     4     4    14  7.75
5     5    10    15     5     5    15  8.75

另一种选择是

cols <- c('a', 'b', 'c', 'e')
df %>%
  rowwise() %>% 
  mutate(min = min(c_across(cols), na.rm = TRUE),
         max = max(c_across(cols), na.rm = TRUE), 
         avg = mean(c_across(cols), na.rm = TRUE)
  )

# A tibble: 5 x 8
# Rowwise: 
      a     b     c d         e   min   max   avg
  <int> <int> <int> <chr> <int> <int> <int> <dbl>
1     1     6    11 a         1     1    11  4.75
2     2     7    12 b         2     2    12  5.75
3     3     8    13 c         3     3    13  6.75
4     4     9    14 d         4     4    14  7.75
5     5    10    15 e         5     5    15  8.75

在这些情况下,即使是@Sinh 建议的 group_by 方法也无法正常工作。

使用 purrr 中的 pmap() 可能更可取,因为您只需要 select 数据一次,并且可以使用 select 助手:

df %>% 
 mutate(pmap_dfr(across(where(is.numeric)),
                 ~ data.frame(max = max(c(...)),
                              min = min(c(...)),
                              avg = mean(c(...)))))

      a     b     c d         e   max   min   avg
  <int> <int> <int> <chr> <int> <int> <int> <dbl>
1     1     6    11 a         1    11     1  4.75
2     2     7    12 b         2    12     2  5.75
3     3     8    13 c         3    13     3  6.75
4     4     9    14 d         4    14     4  7.75
5     5    10    15 e         5    15     5  8.75

或加上tidyr:

df %>% 
 mutate(res = pmap(across(where(is.numeric)),
                   ~ list(max = max(c(...)),
                          min = min(c(...)),
                          avg = mean(c(...))))) %>%
 unnest_wider(res)

如果我们想将特定列设置为行名称属性 (column_to_rownames),然后 return,这里有一种方法可以在 mutate 中保留 data.frame 属性] 改造后的属性

library(dplyr)
library(tibble)
library(purrr)
df %>% 
   column_to_rownames('d') %>%
   mutate(max = reduce(., pmax), min = reduce(., pmin), 
         avg = rowMeans(.)) %>% 
   rownames_to_column('d')
#  d a  b  c e max min  avg
#1 a 1  6 11 1  11   1 4.75
#2 b 2  7 12 2  12   2 5.75
#3 c 3  8 13 3  13   3 6.75
#4 d 4  9 14 4  14   4 7.75
#5 e 5 10 15 5  15   5 8.75