如何保存 PCA 摘要?
How to save PCA summary?
我已经使用 prcomp
函数对我的数据执行 PCA。我可以使用 write.csv
函数在 csv 中保存其他数据,如中心、比例、分数、旋转,但我不知道如何保存 PCA 摘要。
我使用的数据
structure(list(Location = c("Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay"), Serial = 32:52,
Station = c("NDDZ91", "NDDZ92", "NDDZ94", "NDDZ95", "NDDZ96",
"NDDZ97", "NDDZ98", "NDDZ99", "NDDZ103", "NDDZ105", "NDDZ106",
"NDDZ107", "NDDZ112", "NDDZ113", "NDDZ114", "NDDZ115", "NDDZ116",
"NDDZ117", "NDDZ119", "NDDZ122", "NDDZ123"), Longitude = c(119.6875,
119.6641667, 119.7163889, 119.7425, 119.69, 119.7719444,
119.6622222, 119.7544444, 119.6644444, 119.6875, 119.7369444,
119.7672222, 119.6583333, 119.6327778, 119.5991667, 119.6769444,
119.7019444, 119.7419444, 119.6216667, 119.6722222, 119.6408333
), Latitude = c(26.34944444, 26.35972222, 26.36, 26.36027778,
26.37583333, 26.38277778, 26.38638889, 26.39277778, 26.41055556,
26.41972222, 26.42833333, 26.42861111, 26.43361111, 26.44416667,
26.45, 26.45, 26.44805556, 26.44805556, 26.46638889, 26.47166667,
26.4775), Petrolium = c(20.26723856, 35.12860786, 38.00639611,
485.9158071, 6.801285888, 130.2613429, 26.41691724, 21.47363409,
75.24255785, 9.088017875, 17.83869051, 106.4365614, 367.7372615,
26.95847112, 42.01753212, 17.56582294, 72.00256098, 382.5705508,
150.0004825, 452.8679126, 61.51137016), Sulfide = c(15.16,
47.67, 30.23, 75.05, 10.51, 38.75, 21.64, 35.97, 122.53,
6.95, 58.52, 75.92, 92.23, 10.85, 72.1, 28.46, 81.19, 195.59,
42.54, 277.4, 81.67), PAH = c(0.0479, 0.0638, 0.1312, 0.1293,
0.0589, 0.1032, 0.2725, 0.0712, 0.1173, 0.0703, 0.2097, 0.1261,
0.0685, 0.0796, 0.1353, 0.0354, 0.0323, 0.034, 0.0269, 0.0952,
0.0269), OCP = c(0.01071845, 0, 0, 0, 0, 0.004247812, 0,
0, 0, 0.002020821, 0, 0.055799207, 0.003690873, 0.019063717,
0, 0.173323781, 0.010429405, 0, 0, 0.013486877, 0), PES = c(0,
44.15139004, 17.922209, 35.47228577, 0, 66.9289217, 11.62692114,
30.51552678, 57.2039725, 35.11363161, 49.43776022, 83.9088046,
0, 0, 45.56461801, 0, 0, 8.461490717, 29.69151766, 76.46222766,
34.05399385), Acrylic = c(0, 0, 0, 0, 0, 0, 0, 30.51552678,
0, 0, 0, 41.9544023, 0, 0, 0, 0, 0, 0, 0, 0, 0), PP = c(0,
0, 0, 0, 5.263920851, 0, 0, 0, 0, 0, 49.43776022, 0, 186.2662335,
248.4375, 0, 0, 0, 4.230745359, 0, 0, 0), Rayon = c(74.23500995,
58.86852005, 53.766627, 70.94457153, 26.31960425, 0, 69.76152682,
61.03105356, 114.407945, 70.22726323, 49.43776022, 41.9544023,
0, 0, 136.693854, 112.339267, 36.33232944, 16.92298143, 59.38303531,
305.8489106, 102.1619815)), class = "data.frame", row.names = c(NA,
-21L))
我用于 PCA 的代码
Mydata = read.csv("PCA_Luoyuan.csv")
head(Mydata)
pca = prcomp(Mydata[,6:13], scale. = TRUE)
summary(pca)
您可以从 summary(pca)
中提取 importance
。
write.csv(summary(pca)$importance, 'temp.csv')
我们也可以使用write.table
write.table(summary(pca)$importance, "temp.txt")
我已经使用 prcomp
函数对我的数据执行 PCA。我可以使用 write.csv
函数在 csv 中保存其他数据,如中心、比例、分数、旋转,但我不知道如何保存 PCA 摘要。
我使用的数据
structure(list(Location = c("Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay"), Serial = 32:52,
Station = c("NDDZ91", "NDDZ92", "NDDZ94", "NDDZ95", "NDDZ96",
"NDDZ97", "NDDZ98", "NDDZ99", "NDDZ103", "NDDZ105", "NDDZ106",
"NDDZ107", "NDDZ112", "NDDZ113", "NDDZ114", "NDDZ115", "NDDZ116",
"NDDZ117", "NDDZ119", "NDDZ122", "NDDZ123"), Longitude = c(119.6875,
119.6641667, 119.7163889, 119.7425, 119.69, 119.7719444,
119.6622222, 119.7544444, 119.6644444, 119.6875, 119.7369444,
119.7672222, 119.6583333, 119.6327778, 119.5991667, 119.6769444,
119.7019444, 119.7419444, 119.6216667, 119.6722222, 119.6408333
), Latitude = c(26.34944444, 26.35972222, 26.36, 26.36027778,
26.37583333, 26.38277778, 26.38638889, 26.39277778, 26.41055556,
26.41972222, 26.42833333, 26.42861111, 26.43361111, 26.44416667,
26.45, 26.45, 26.44805556, 26.44805556, 26.46638889, 26.47166667,
26.4775), Petrolium = c(20.26723856, 35.12860786, 38.00639611,
485.9158071, 6.801285888, 130.2613429, 26.41691724, 21.47363409,
75.24255785, 9.088017875, 17.83869051, 106.4365614, 367.7372615,
26.95847112, 42.01753212, 17.56582294, 72.00256098, 382.5705508,
150.0004825, 452.8679126, 61.51137016), Sulfide = c(15.16,
47.67, 30.23, 75.05, 10.51, 38.75, 21.64, 35.97, 122.53,
6.95, 58.52, 75.92, 92.23, 10.85, 72.1, 28.46, 81.19, 195.59,
42.54, 277.4, 81.67), PAH = c(0.0479, 0.0638, 0.1312, 0.1293,
0.0589, 0.1032, 0.2725, 0.0712, 0.1173, 0.0703, 0.2097, 0.1261,
0.0685, 0.0796, 0.1353, 0.0354, 0.0323, 0.034, 0.0269, 0.0952,
0.0269), OCP = c(0.01071845, 0, 0, 0, 0, 0.004247812, 0,
0, 0, 0.002020821, 0, 0.055799207, 0.003690873, 0.019063717,
0, 0.173323781, 0.010429405, 0, 0, 0.013486877, 0), PES = c(0,
44.15139004, 17.922209, 35.47228577, 0, 66.9289217, 11.62692114,
30.51552678, 57.2039725, 35.11363161, 49.43776022, 83.9088046,
0, 0, 45.56461801, 0, 0, 8.461490717, 29.69151766, 76.46222766,
34.05399385), Acrylic = c(0, 0, 0, 0, 0, 0, 0, 30.51552678,
0, 0, 0, 41.9544023, 0, 0, 0, 0, 0, 0, 0, 0, 0), PP = c(0,
0, 0, 0, 5.263920851, 0, 0, 0, 0, 0, 49.43776022, 0, 186.2662335,
248.4375, 0, 0, 0, 4.230745359, 0, 0, 0), Rayon = c(74.23500995,
58.86852005, 53.766627, 70.94457153, 26.31960425, 0, 69.76152682,
61.03105356, 114.407945, 70.22726323, 49.43776022, 41.9544023,
0, 0, 136.693854, 112.339267, 36.33232944, 16.92298143, 59.38303531,
305.8489106, 102.1619815)), class = "data.frame", row.names = c(NA,
-21L))
我用于 PCA 的代码
Mydata = read.csv("PCA_Luoyuan.csv")
head(Mydata)
pca = prcomp(Mydata[,6:13], scale. = TRUE)
summary(pca)
您可以从 summary(pca)
中提取 importance
。
write.csv(summary(pca)$importance, 'temp.csv')
我们也可以使用write.table
write.table(summary(pca)$importance, "temp.txt")